LIST OF FIGURES

Fig. 2.1 Tectono-stratigraphic framework of Nagaland (after Mathur and Evans, 1964)

Fig. 2.2 Tectono-stratigraphic framework of Nagaland (after Ghose et al., 1987)

Fig. 2.3 Tectonic map of North East India (after Nandy, 1999)

Fig. 3.1 Flow chart for methodology in paleomagnetism

Fig. 5.1 Geological map of the Zipu and adjoining area with geochemical sample locations, Phek district (modified after GSI, 1986)

Fig. 5.2 Total alkalii-silica classification of NHO basalt (after Le Bas et al., 1986)

Fig. 5.3 Total alkalii-silica classification of NHO basalt (after Middlemost, 1994)

Fig. 5.4 Al_2O_3 vs normative anorthite in plagioclase for NHO basalt (after Irvine and Baragar, 1971)

Fig. 5.5 $\text{Na}_2\text{O}+\text{K}_2\text{O}-\text{Fe}_2\text{O}_3^\text{T}$-$\text{MgO}$ diagram of NHO basalts (after Irvine and Baragar, 1971)

Fig. 5.6 Harker variation diagrams of SiO_2 vs major oxides

Fig. 5.7 Harker variation diagrams of MgO vs major oxides

Fig. 5.8 Harker variation diagram of SiO_2 vs trace elements

Fig. 5.9 Harker variation diagrams of Zr vs major oxides

Fig. 5.10 Harker variation diagrams of $\text{MgO}/\text{FeO}^\text{T}$ vs compatible elements

Fig. 5.11 Zr/Ti vs Nb/Y chemical classification plot (after Pearce, 1996)

Fig. 5.12 Zr/TiO_2 vs SiO_2 bivariate plot of NHO basalt (after Winchester and Floyd, 1997)

Fig. 5.13 $\text{Zr}/\text{P}_2\text{O}_5\times10^4$ vs TiO$_2$ composition of NHO basalt (after Winchester and Floyd, 1976)

Fig. 5.14 Primitive mantle normalised spidegram for NHO basalt (after Sun and McDonough, 1989)
Fig. 5.15 N-MORB normalised spidergram for the NHO basalt (after Sun and McDonough, 1989)
Fig. 5.16 N-MORB normalised REE diagram of NHO basalt (after Sun and McDonough, 1989)
Fig. 5.17 Geological map of Pfütsero and adjoining areas, Phek district with sample locations for petrographic and geochemical study (modified after Agarwal and Madhav, 1988)
Fig. 5.18 PAAS normalized major oxide spider diagram (after Taylor and McLennan, 1985)
Fig. 5.19 Al₂O₃ vs K₂O plots showing samples lying in illite field (after Sinha et al., 2007)
Fig. 5.20 Geochemical plots of Upper Disang sandstone (after Herron, 1988)
Fig. 5.21 Geochemical plots showing ranges in composition of Upper Disang sandstones (after Pettijohn et al., 1987 and Creaser et al., 1997)
Fig. 5.22 PAAS-normalized trace element spider diagram (after Taylor and McLennan, 1985)
Fig. 5.23 Chondrite-normalized REE patterns of Upper Disang sandstones (after Evensen et al., 1978)
Fig. 5.24 Chondrite-normalized REE patterns of Upper Disang shale (after Evensen et al., 1978)
Fig. 6.1a Representative IRM acquisition curves from Leshimi section, Phek district
Fig. 6.1b IRM acquisition curves from Viswema section, Kohima district
Fig. 6.2 IRM acquisition curves of representative basalt samples from NHO
Fig. 6.3 Magnetic susceptibility vs temperature curves of representative basalt samples from NHO
Fig. 6.4 Geological map showing Leshimi and Viswema sections (after Jayaram et al., 1987)
Fig. 6.5 Composite litholog of Leshimi section with paleomagnetic sampling sites, Phek district
Fig. 6.6 Orthogonal vector plot and corresponding normalized intensity decay curves of thermal demagnetization of representative samples from Leshimi section, Phek district
Fig. 6.7 Vector end point diagrams and normalized intensity decay curves illustrating AfD of representative samples from Upper Disang Leshimi section, Phek district

Fig. 6.8 Composite litholog of the Viswema section, southern Kohima with paleomagnetic sampling sites

Fig. 6.9 Orthogonal vector plots and corresponding normalized intensity decay curves illustrating ThD of Viswema section, southern Kohima

Fig. 6.10 Orthogonal vector plot and corresponding normalized intensity decay curves illustrating AfD of Viswema section, southern Kohima

Fig. 6.11 Pie chart showing distribution of oblate and prolate AMS ellipsoids

Fig. 6.12 Jelinek shape plot showing eccentricity of magnetic ellipsoids with degree of anisotropy

Fig. 7.1 Binary plot of Ce/Yb vs Zr/Nb (after Bagci, 2013)

Fig. 7.2 M/Yb vs Nb/Yb plots (after Pearce and Peate, 1995)

Fig. 7.3 Nb-Zr-Y tectonic discrimination plot of NHO tholeiitic basalts (after Meschede, 1986)

Fig. 7.4 Zr vs Zr/Y tectonic discrimination plot of NHO basalt (after Pearce and Norry, 1979)

Fig. 7.5 V vs Ti discrimination diagram for NHO basalt (after Shervais, 1982)

Fig. 7.6 K₂O + Na₂O vs K₂O / (K₂O + Na₂O) x 100 plot (after Hughes, 1972)

Fig. 7.7 Scatter plots of Al/Na ratio vs CIA reflecting silicate weathering intensity (after Selvaraj and Chen, 2006)

Fig. 7.8 A-CN-K plots of Upper Disang sediments showing weathering trend compared to UCC, PAAS and average shale (after Nesbitt and Young, 1984)

Fig. 7.9 A-C-N plots of Upper Disang sediments indicating intense weathering (after Harnois, 1988)

Fig. 7.10 Scatter plots of Upper Disang sediments indicating intensity of weathering (after Fedo et al., 1995)

Fig. 7.11 K₂O-Fe₂O₃-Al₂O₃ plots of Upper Disang sediments (after Wronkiewich and Condie, 1987)
Fig. 7.12 Log total QFR vs Log polycrystalline QFR plots of Upper Disang sediments (after Suttner and Dutta, 1986)

Fig. 7.13 QFR diagram of Upper Disang sandstones (after Dickinson and Suczek, 1979)

Fig. 7.14 SiO$_2$ vs K$_2$O/Na$_2$O tectonic discrimination plots (after Maynard et al., 1982)

Fig. 7.15 Tectonic setting discrimination diagram for Upper Disang sediments (after Murphy, 2000)

Fig. 7.16 Tectonic discrimination diagram for Upper Disang sediments (after Bhatia, 1983)

Fig. 7.17 Th/Sc vs Zr/Sc plots of Upper Disang sediments indicating recycling of sediments (after McLennan et al., 1993)

Fig. 7.18 QFL plots of Upper Disang sandstones for tectonic setting (after Dickinson and Suczek, 1979)

Fig. 7.19 QFL plots of Upper Disang sandstones (after Dickinson et al., 1983)

Fig. 7.20 Qt-F-Rt plots for tectonic setting discrimination of Upper Disang sandstones (after Dickinson, 1985)

Fig. 7.21 Depositional environment discrimination plots of Upper Disang sediments (after Roaldest, 1978)

Fig. 7.22 Provenance of Upper Disang sediments (after Irvine and Baragar, 1971)

Fig. 7.23 K$_2$O-SiO$_2$ plots showing sub-alkaline composition of Upper Disang sediments (after Le Maitre et al., 1989)

Fig. 7.24 Provenance plots of Upper Disang sediments (after Amajor, 1987)

Fig. 7.25 Comparison of Sc and Th concentrations with linear provenance indicators for continental or more mafic influenced materials (after Chakrabarti et al., 2009)

Fig. 7.26 Provenance discrimination plots of La-Th-Sc for Upper Disang sediments (after Bhatia and Crook, 1986; Cullers, 1994)

Fig. 7.27 Discrimination function diagram for provenance signatures of sandstone-mudstone suites using major element ratios (after Roser and Korsch, 1988)

Fig. 7.28 Discrimination function diagram for the provenance of sandstone-mudstone suites using major element ratios (after Bhatia, 1983)
Fig. 7.29 Cr/V vs Y/Ni plots showing mixing between granite and ultramafic end-members (after Mongelli et al., 2006)

Fig. 7.30 Conceptual basin models of Upper Disang sediments (a) Middle Eocene, (b) Late Eocene

Fig. 7.31 Paleo pole of basalt plotted in synthetic apparent polar wandering path (APWP) of India (after Vandamme et al., 1991)

Fig. 7.32 Correlation of Leshimi section MPTS with Cande and Kent (1995) GPTS

Fig. 7.33 Correlation of Viswema section MPTS with Cande and Kent (1995) GPTS

Fig. 7.34 Sediment accumulation rate of study area (after Cande and Kent, 1995)