List of Figures

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Figure Captions</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 4.1</td>
<td>Colony morphology of pure cultures on nutrient agar (A) P. aeruginosa OBP1, (B) P. aeruginosa OBP2, (C) P. aeruginosa OBP3 and (D) P. aeruginosa OBP4</td>
<td>82</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Phylogenetic tree generated using Neighbour-Joining method showing the similarity of selected strains with other 16S rRNA gene sequences of P. aeruginosa. Bootstrap values are expressed as percentages of 1000 replications. Bar, 0.01 substitutions per nucleotide position. (A) P. aeruginosa OBP1, (B) P. aeruginosa OBP2, (C) P. aeruginosa OBP3 and (D) P. aeruginosa OBP4</td>
<td>84</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Haemolysis on blood agar medium by cell free culture supernatant of bacterial strains. (A) P. aeruginosa OBP1, (B) P. aeruginosa OBP2, (C) P. aeruginosa OBP3 and (D) P. aeruginosa OBP4</td>
<td>87</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>CTAB agar assay for the detection of glycolipid biosurfactant secreted by the bacterial colonies. (A) P. aeruginosa OBP1, (B) P. aeruginosa OBP2, (C) P. aeruginosa OBP3 and (D) P. aeruginosa OBP4</td>
<td>88</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Biosurfactant concentration (g.L⁻¹) produced by P. aeruginosa strains in mineral salt medium supplemented with 2% n-hexadecane. Results represent the mean of three independent experiments ± standard deviation</td>
<td>89</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Time profile of (A) growth and (B) reduction in the surface tension of the culture broth by the P. aeruginosa strains in mineral salt medium supplemented with 2% n-hexadecane. Results represent the mean of three independent experiments</td>
<td>90</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Scanning electron micrograph of P. aeruginosa strains showing growth on n-hexadecane. (a) P. aeruginosa OBP1, (b) P. aeruginosa OBP2, (c) P. aeruginosa OBP3 and (d)</td>
<td>91</td>
</tr>
</tbody>
</table>
P. aeruginosa OBP4

Figure 4.8. Determination of critical micelle concentration (CMC) of the biosurfactants produced by *P. aeruginosa* strains. Results represent the mean of three independent experiments ± standard deviation. (a) *P. aeruginosa* OBP1, (b) *P. aeruginosa* OBP2, (c) *P. aeruginosa* OBP3 and (d) *P. aeruginosa* OBP4

Figure 4.9. Emulsification indices (E_{24}%) exhibited by the culture supernatants of *P. aeruginosa* strains with various hydrophobic substrates

Figure 4.10. Effect of (A) pH, (B) temperature and (C) salinity (NaCl) on the emulsifying properties (E_{24}%) of culture supernatants of *P. aeruginosa* strains against diesel.

Figure 4.11. Foaming indices (F_{24}%) exhibited by the culture supernatant of *P. aeruginosa* strains. Results represent the mean of three independent experiments ± standard deviation

Figure 4.12. Hydrophobicity of bacterial strains at exponential and stationary phase of growth when cultivated in mineral salt medium supplemented with 2% n-hexadecane or glucose. Values are the mean of three independent experiments ± standard deviation

Figure 4.13. Thin-layer chromatogram of biosurfactants produced by *P. aeruginosa* strains when cultivated in mineral salt medium supplemented with n-hexadecane. (a) *P. aeruginosa* OBP1, (b) *P. aeruginosa* OBP2, (c) *P. aeruginosa* OBP3 and (d) *P. aeruginosa* OBP4. F1-F3 represents fractions that exhibit positive results of surface activity

Figure 4.14a. The FTIR spectra of the biosurfactants produced by (A) *P. aeruginosa* OBP1 and (B) *P. aeruginosa* OBP2 in mineral salt medium supplemented with n-hexadecane

Figure 4.14b. The FTIR spectra of the biosurfactants produced by (C) *P. aeruginosa* OBP3 and (D) *P. aeruginosa* OBP4 in mineral
salt medium supplemented with n-hexadecane

Figure 4.15a. LC-MS profile of purified fraction of (A) *P. aeruginosa* OBP1 and (B) *P. aeruginosa* OBP2

Figure 4.15b. UPLC-MS profile of purified fraction of (A) *P. aeruginosa* OBP3 and (B) *P. aeruginosa* OBP4

Figure 4.16. Thermogravimetric analysis (TGA) of dried biosurfactants produced by *P. aeruginosa* strains during growth in mineral salt medium supplemented with n-hexadecane

Figure 4.17. Differential scanning calorimetry (DSC) of dried biosurfactant produced by *P. aeruginosa* strains during growth in mineral salt medium supplemented with n-hexadecane

Figure 4.18. Reduction in the viscosity of crude oil after treatment with *P. aeruginosa* strains. Values are the mean of three independent experiments ± standard deviation

Figure 4.19. PAH solubilization assay showing the decrease in the available phenanthrene, anthracene and naphthalene concentration with increasing concentration of biosurfactants produced by (A) *P. aeruginosa* OBP1, (B) *P. aeruginosa* OBP2, (C) *P. aeruginosa* OBP3, and (D) *P. aeruginosa* OBP4. Values are the mean of three independent experiments ± standard deviation

Figure 4.20. Gas chromatographic analysis of the saturate fraction of crude oil after treatment with bacterial strains. (A) Control without treatment, (B) *P. aeruginosa* OBP1, (C) *P. aeruginosa* OBP2, (D) *P. aeruginosa* OBP3, and (E) *P. aeruginosa* OBP4

Figure 4.21. Gas chromatographic analysis of the saturate fraction of crude oil after treatment with (A) control (B) Consortium I, (C) Consortium II, (D) Consortium I+ biosurfactant, and (E) Consortium II+ biosurfactant

Figure 4.22. Removal of crude oil from the contaminated sand after washing with biosurfactant solution (BS) produced by *P.
P. aeruginosa strains. CFCS-Cell free culture supernatant, SDS-Sodium dodecyl sulphate. Values are the mean of three independent experiments ± standard deviation

Figure 4.23. Recovery of crude oil (%) from the sand pack column at room temperature (RT), 50°C, 70°C, and 90°C after treatment with cell free culture broth of *P. aeruginosa* strains. Values are the mean of three independent experiments ± standard deviation

Figure 4.24. Effect of different parameters on the separation of residual crude oil from the petroleum sludge. (A) Biosurfactant concentration, (B) sludge concentration, (C) treatment period, and (D) shaking. Values are the mean of three independent experiments ± standard deviation

Figure 4.25. Degradation of biosurfactants produced by the selected bacterial strains by (A) *P. aeruginosa* (MTCC 8165), (B) *B. circulans* (MTCC8167), and (C) in garden soil. Values are the mean of three independent experiments ± standard deviation

Figure 4.26. Effect of biosurfactants produced by *P. aeruginosa* strains on the germination index of (A) rice and (B) mung bean. Values are the mean of three independent experiments ± standard deviation

Figure 4.27. Chemotaxis activity of (A) *Staphylococcus aureus* (SA) with RL and streptomycin (S); (B) *Staphylococcus aureus* (SA) with glucose (G) and streptomycin (S); (C) *Klebsiella pneumoniae* (KP) with RL and streptomycin (S); and (D) *Klebsiella pneumoniae* (KP) with glucose (G) and streptomycin (S)

Figure 4.28. Effect of biosurfactants on the viability of mouse fibroblast cell line (L929) grown in Dulbecco’s minimum essential medium (DMEM) supplemented with 10% fetal bovine serum. (A) *P. aeruginosa* OBP1, (B) *P. aeruginosa* OBP2, (C) *P. aeruginosa* OBP3, and (D) *P. aeruginosa* OBP4
Figure 4.29. The acute dermal irritation study of transdermal patch in rabbits. (A) at 0 h and (D) after 72 h of treatment with biosurfactant from OBP1 strain; (B) at 0 h and (E) after 72 h of treatment with biosurfactant from OBP2 strain; (C) at 0 h and (F) after 72 h of treatment with biosurfactant from OBP3 strain; (G) at 0 h and (H) after 72 h of treatment with biosurfactant from OBP4 strain; (I) Control-after treatment 72 h of treatment with 0.8% HCHO (v/v)

Figure 4.30. Plate-1: TEM micrograph of the biosurfactant assisted synthesis of iron oxide nanocrystals

Figure 4.31. Plate-2: TEM micrograph of the biosurfactant assisted synthesis of iron oxide nanocrystals

Figure 4.32. Plate-2: TEM micrograph of A) SNP and B) SNP/RL composites

Figure 4.33. UV-Vis spectroscopic analysis of the silver nanoparticle colloid in rhamnolipid suspension (SNPRL) with respect to time in days. The details on the absorption peaks during day 10 to 33 were shown in the right side corner

Figure 4.34. Graph showing the relative absorbance of the RL solution and SNPRL solution after synthesis on 30th day

Figure 4.35. UV-Vis spectroscopic evidence of silver nano-particle rhamnolipid (SNPRL) stability during the treatment with NaCl (2 mg.ml\(^{-1}\)) and further degradation of SNPRL at an exposure of 60 mg.ml\(^{-1}\) of NaCl. Freshly prepared silver nano-particles (SNP) was used as negative control.

Figure 4.36. Antibacterial activity of (i) pristine SNP, ION and RL, (ii) SNPRL and IONRL nanocomposite, and (iii) streptomycin against different bacterial strains

Figure 4.37. Growth curves of bacterial strain OBP1 on HBE, MHBE30 and their nanocomposites

Figure 4.38. SEM micrographs of biodegraded nanocomposite films.(a) HBE, (b) NCE2.5, (c) NCME2.5, and (d) MHBE30