CONTENTS

Page

Preface i

List of publications iv

List of symbols v

Acknowledgements vii

CHAPTER I - INTRODUCTION TO EQUATORIAL IONOSPHERE
AND THE IONOSPHERIC DRIFT MEASUREMENTS

1.1 Geomagnetic variations at low latitudes 1

1.2 Electrical conductivities at the ionospheric heights 3

1.3 Ionospheric variations at low latitudes 6

1.4 Electromagnetic Drift of the ionization 8

(a) Martyn's theory 8

(b) Predictions of Martyn's theory for ionospheric drifts 9

1.5 Ionospheric drifts and its measurements 18

1.6 Experimental set up at Thumba for Drift measurements 18

(a) Transmitter unit 18

(b) Receiving unit 21

(c) Recording system 25

(d) Antenna system 27
CHAPTER II - FADING CHARACTERISTICS OF IONOSPHERIC ECHOES AND SIMILAR LIFDS METHOD FOR DRIFT COMPUTATIONS

2.1 Macleod's theory of fading of radio-waves reflected from the ionosphere and further extensions by McHicil and others

2.2 Typical amplitude distribution and power spectrum of ionospheric echoes observed at Thumba.

2.3 Diurnal, seasonal and solar-cycle variations of the fading rate of the reflected signal at Thumba.

2.4 Similar fades method of analysis for drift from spaced antenna fading records

2.5 Results of apparent drift parameters at Thumba for the period 1964-69

2.6 Statistical errors in V' and its day-to-day fluctuations at a particular solar hour

2.7 Effect of solar cycle on the apparent drift at Thumba

2.8 Latitudinal variation of drift and misorientation parameters
 (a) Magnitude of apparent drift
 (b) Diurnal and semi-diurnal drift vectors

2.9 Conclusions

CHAPTER III - FULL-CORRELATION METHOD OF ANALYSIS OF FADING RECORDS AT SPACED RECEIVERS

3.1 Method of Briggs, Phillips and Shimm and its extension by Phillips - Spencer and Fockes.

3.2 Optimization of the method of the present analysis
 (c) Sampling theory
(b) Criterion for the sampling interval and length of the record

3.3 Results of steady and random drift components at Thumba

3.4 Results of anisotropy parameters of ionospheric irregularities over Thumba

3.5 Solar cycle effect on drift and anisotropy parameters
 (a) Steady and random drift speeds
 (b) Anisotropy parameters

3.6 Occurrence of negative v_c^2 and r^2 at Thumba

3.7 Latitudinal dependence of drift and anisotropy parameters

3.8 Conclusions

CHAPTER IV - IONOSPHERIC DRIFTS IN RELATION TO THE EQUATORIAL ELECTROJET DURING MAGNETICALLY QUIET AND DISTURBED CONDITIONS

4.1 Equatorial ionospheric drift and the electrojet

4.2 Effect of magnetic activity on electron drifts in the equatorial electrojet

4.3 Steady and random drift parameters during magnetically quiet and disturbed days

4.4 Anisotropy parameters of the ground diffraction pattern during magnetically quiet and disturbed days
CHAPTER V - THE COMPARISON OF VARIOUS METHODS OF ANALYSIS AND THEIR VALIDITY

5.1 Futter's method

5.2 Method of Briggs - Page and Spencer
 (probability distribution of time lags)

5.3 Beneki's statistical method for anisometric and turbulent patterns
 (a) Isometric turbulent pattern
 (b) Anisometric turbulent pattern

5.4 Method of Lyons, Morris and Bangboyse using standard deviation of time lags

5.5 Sprengor and Schminder's method (Variant-2) 122

5.6 Best point correlation method of Yerg and its modification by Keneshea and by Fodor for 3-D case
 (a) Yerg's method
 (b) Best-fit correlation method
 (c) Statistical determination of the three dimensional ionospheric drifts

5.7 Briggs spatial correlation method of analysis
CHAPTER VI - ON THE SMALL FEATURES OF THE IONOSPHERIC DRIFTS

5.8 Velocity of correlation analysis

5.9 Results and comparison of various methods of analysis for Thumba (0.6°S dip)

5.10 Conclusions

6.1 Height gradient of the horizontal drift and anisotropy parameters in E and F regions of the ionosphere at Thumba

6.2 Vertical ionospheric drift in E and F regions at Thumba
 (a) Introduction
 (b) Experimental technique
 (c) Method of analysis
 (d) Results

6.3 Reversal of drift direction at Thumba
 (a) Introduction and observations schedule
 (b) Rate of fading and drift vector round reversal
 (c) Morning reversal and the size of irregularities
 (d) Evening reversal and height of the E-layer
 (e) Reversal of drift in F-region and the appearance and disappearance of sporadic E layer
(f) Reversal of drift and short-term fluctuations in H 155
(g) Conclusions 155

6.4 Drift and anisotropy parameters at Thumba during spread-F conditions 156
(a) Introduction 156
(b) Fading characteristics during spread-F 157
(c) Results for V', V, V', V, β and γ 158

6.5 Occurrence of opposite drifts in D and F-regions at Thumba 151

6.6 Dependence of the drift and anisotropy parameters of the ground diffraction pattern at the equator on the E-W and N-S extent of antenna separation 152
(a) Introduction 152
(b) Special observations 153
(c) Results 155
(d) Interpretation of results 158
(e) Discussion 172

6.7 Effect of solar flares on the drifts at Thumba 172

6.8 Drift and anisotropy parameters from first and second order reflections recorded at spaced aerials 173
(a) Introduction 173
(b) Specular and diffusive reflection mechanisms 174
CHAPTER VII - DISPERSIVE PROPERTIES OF THE IONOSPHERIC DRIFTS

7.1 Power spectrum analysis of fading records at Thumba
 (c) Method of analysis 185
 (b) Application to Thumba drift records 187

7.2 Power spectrum results for drifts at other stations 191

7.3 Interpretation of results 194

7.4 Comparison of apparent drift speed as determined by similar fades method and from the shift of the maxima of cross-correlogram 202

7.5 Skewness of the cross-correlograms 204

7.6 Analysis of frequency filtered drift records 206

7.7 Variation in the shape of the cross-correlation curves with the receiver separation 209

7.8 Conclusions 214
CHAPTER VIII - THUNDERSTORM AND THE OCCURRENCE OF
NIGHT-TIME SPOKELIO AT THUMBA

8.1 Introduction 215

8.2 Ionospheric soundings during
thunderstorm activity 217

8.3 Conclusions 221

8.4 Discussions 222

References 224