Index

A : ABSTRACT

B : INTRODUCTION 12-22

C : REVIEW OF LITERATURE 23-128

C.1: Epidemiology of acute myocardial infarction (AMI), refractory angina and heart failure (HF) 23

C.2: Pathophysiology & clinical aspects of AMI, refractory angina and HF

C.2.1 Pathophysiology of Angina & AMI 30

C.2.1.1 The Atherosclerotic Process 30

C.2.1.2 Clinical Syndromes of Atherosclerosis

C.2.2 Clinical Aspects of Angina & AMI 38

C.2.3 Pathophysiology of HF 39

C.2.3.1 Adaptive Mechanisms 40

C.2.3.2 Biochemical abnormalities in HF 41

C.2.3.3 Neurohumoral and Cytokines adjustments 42

C.2.3.4 Heart Failure-A disturbance of the myocardial pump 46

C.2.4 Clinical Aspects of HF 48

C.3: Current Trends in the Management of AMI, refractory angina and HF 51

C.3.1 Diagnostic Modalities in AMI 51

C.3.1.1 Non-invasive Testings 53

C.3.1.2 Catheter based invasive Diagnostic Procedures 54

C.3.2 Treatment Strategies in AMI 55

C.3.2.1 Oxygen 55

C.3.2.2 Nitroglycerin 55

C.3.2.3 Analgesia 56

C.3.2.4 Aspirin 56

C.3.2.5 Beta blockers 56

C.3.2.6 Reperfusion therapy 56

C.3.2.6.1 Thrombolytic Therapy 57

C.3.2.6.2 PCI (Primary PCI) 58

C.3.2.6.3 Combining Thrombolysis and PCI as reperfusion therapy 64

C.3.2.6.4 Acute Surgical Reperfusion 66

C.3.2.6.5 Assessment of Reperfusion 66

C.3.2.6.6 No Reflow & Distal Embolization during PCI 69

C.3.2.6.7 Ancillary therapy to Reperfusion therapy 75

Hetal Shah
L M College of Pharmacy, Ahmedabad, India
C. Nitrates 78
D. Beta-blockers 79
E. Inhibitors of RAAS 79
F. Calcium Channel Blockers 80
G. Lipid Lowering Agents 80
H. Miscellaneous 80

C.3.3 Diagnostic Modalities in Refractory Angina 81
C.3.3.1 Non-invasive Testings 82
A. Biochemical Tests 82
B. Resting ECG 83
C. Exercise ECG 83
D. Exercise Treadmill testing 84
E. Stress imaging studies:
 echocardiographic and nuclear 84
F. Computed Tomography (CT) Angiography 87

C.3.4 Treatment Modalities in Refractory Angina 88
C.3.4.1 Beta Blockers 89
C.3.4.2 Calcium Channel blockers 89
C.3.4.3 Nitrates 89
C.3.4.4 Anti-platelet agents 90
C.3.4.5 Lipid Lowering agents 90
C.3.4.6 Angiotensin Converting Enzyme inhibitor 91
C.3.4.7 Adjunctive Treatment for Refractory Angina 91

C.3.5 Diagnostic Modalities in HF 98
C.3.5.1 Electrocardiogram 99
C.3.5.2 Chest Radiograph 99
C.3.5.3 Echocardiography 99
C.3.5.4 Cardiac Catheterization 100
C.3.5.5 Serum B-type Natriuretic peptide assay 101

C.3.6 Treatment Modalities in HF 101
C.3.6.1 Non-pharmacological therapy & General measures 101
C.3.6.2 Pharmacological therapy for CHF caused by systolic dysfunction 103
A. ACEi 103
B. ARBs 103
C. Beta blockers 104
D. Digoxin 108
E. Diuretics 108
F. Aldosterone Antagonists 109
G. Hydralazine and nitrates 109
H. Other medical therapy 110
I. Intravenous Ionotropes & Vasodilators 110
J. Other novel agents 112
C.3.6.3 Pharmacological Therapy for CHF caused by diastolic dysfunction 112
C.3.6.4 Hemodynamic monitoring to tailor CHF Therapies 113
C.3.6.5 Device Therapies for HF 114
A. Cardiac Resynchronization therapy 114
B. Defibrillator therapy 115
C. Left ventricular assist devices 115
C.3.6.6 Surgical therapies for HF 116
A. Ventricular Restoration surgery 116
B. Cardiac transplantation 116
C. Mitral valve reconstruction in left ventricular dysfunction

C.4 Changing Trends in Medical Devices used in Cardiology

C.4.1 Advances in Medical Devices in Interventional Cardiology
C.4.1.1 Coronary Stent systems
C.4.1.2 Atherectomy
C.4.1.3 Ablative laser assisted angioplasty
C.4.1.4 Ultrasound thrombolysis
C.4.1.5 Mechanical Thrombectomy
C.4.1.6 Distal embolic protection devices
 A. Distal Occlusion Systems
 B. Embolic Entrapment Filters
 C. Proximal Occlusion Devices
C.4.1.7 Chronic Total occlusion crossing wires
C.4.2 Advances in Medical Devices & Technology for management of Angina
 C.4.2.1 Enhanced external counterpulsation
C.4.2.2 Endoscopic transthoracic sympathectomy
C.4.2.3 Multislice Computed tomography
C.4.3 Advances in Medical Devices for Management of Heart Failure
 C.4.3.1 Techniques for respiratory support
 C.4.3.2 Cardiac support devices
 C.4.3.3 Mechanical circulatory support devices
 C.4.3.4 Implantable hemodynamic monitors

D: MATERIALS AND METHODS

D.1 Efficacy of DPD in AMI
D.1.1 Study Population
D.1.2 Study design
D.1.3 Device Description
D.1.4 Procedure Description
D.1.5 Angiographic Analysis
D.1.6 Procedural time
D.1.7 StudyEndpoints
 D.1.7.1 Assessment of Blood Flow
 A. TIMI flow grades
 B. TIMI Myocardial perfusion grades
 D.1.7.2 Device Success
 D.1.7.3 Angiographic Success
 D.1.7.4 Procedural Success
 D.1.7.5 Periprocedural adverse events
 D.1.7.6 Slow/No Reflow
D.1.8 Data Analysis

D.2 Safety and Efficacy of Coronary sinus Reducer stent in Refractory Angina
D.2.1 The Device
D.2.2 Patient Population
D.2.3 Study Design & follow Up
 D.2.3.1 Pre-implantation Screening tests
 D.2.3.2 Reducer® stent implantation procedure
 D.2.3.3 Post implantation follow up
 D.2.3.4 Screening & Follow up tests procedures

Hetal Shah
L M College of Pharmacy, Ahmedabad, India
Annexure I

A. CCS Classification for angina 141
B. Treadmill test 142
C. Myocardial perfusion imaging 142
D. Dobutamine induced stress echocardiography 144
E. MSCT angiography 144

D.2.4 Safety endpoints of the study 145
D.2.5 Efficacy endpoints of the study 145
D.2.6 Data Analysis 145

D.3 Safety and Functionality of an implantable device for non-invasive monitoring of pulmonary artery pressure (PAP) in CHF 146
D.3.1 The Device 146
D.3.2 Patient population
 D.3.2.1 Inclusion criteria 147
 D.3.2.2 Exclusion criteria 147
D.3.3 Study Design and follow up
 D.3.3.1 Pre-implantation procedures 148
 D.3.3.2 Implantation procedure 148
 D.3.3.3 Post implantation device follow up 148
D.3.4 Safety Assessments 149
D.3.5 Functionality and Accuracy assessments 149
D.3.6 Data Analysis 149

D.4 Measurement of diurnal variation in PAP non-invasively using implanted device in CHF 151
D.4.1 Patient population 151
D.4.2 Measurement of diurnal variation in PAP 151
D.4.3 Parameters assessed 151
D.4.4 Data Analysis 151

D.5 Evaluation of exercise capacity and variation in PAP following exercise in CHF by non-invasive monitoring using the implanted device 152
D.5.1 Patient population 152
D.5.2 Study procedures 152
D.5.3 Parameters assessed 152
D.5.4 Data analysis 152

D.6 Effect of Metoprolol XL Uptitration on PAP in CHF monitored non-invasively using the implanted device 153
D.6.1 Patient population 153
D.6.2 Study Procedures 153
D.6.3 Parameters assessed 153
D.6.4 Data analysis 153

D.7 Effect of Metoprolol XL on diurnal variation, exercise induced variation in PAP and exercise capacity in CHF monitored non-invasively using the implanted device 154
D.7.1 Patient population 154
D.7.2 Study Procedures 154
 D.7.2.1 Measurement of MXL effect on Diurnal variation in PAP 154
 D.7.2.2 Measurement of MXL effect on exercise induced variation in PAP and exercise capacity 154
D.7.3 Parameters assessed 154
D.7.4 Data analysis 154

D.8 One year clinical follow up of CHF Patients Implanted with the PAP monitoring device 155
D.8.1 Patient population 155
D.8.2 Study Procedures 155
Annexure I

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.8.3 Parameters assessed</td>
<td>155</td>
</tr>
<tr>
<td>D.8.4 Data analysis</td>
<td>155</td>
</tr>
<tr>
<td>D.9 Statistical Analysis</td>
<td>156</td>
</tr>
<tr>
<td>D.9.1 Linear Regression and Correlation coefficient</td>
<td>156</td>
</tr>
<tr>
<td>D.9.2 Student's t test</td>
<td>156</td>
</tr>
<tr>
<td>D.9.3 Chi square test</td>
<td>156</td>
</tr>
<tr>
<td>D.9.4 Bland Altman Analysis</td>
<td>157</td>
</tr>
</tbody>
</table>

E: RESULTS

- **E.1 Efficacy of DPD in AMI**
 - E.1.1 Baseline characteristics | 158
 - E.1.2 Angiographic & lesion characteristics and PCI details | 158
 - E.1.3 Peri-procedural events, intracoronary vasodilators and myocardial flow assessment | 159
 - E.1.4 Time in minutes involved in various steps of the Procedure | 168

- **E.2 Safety and efficacy of CS reducer stent in refractory angina**
 - E.2.1 Baseline Characteristics & Pre-implantation details | 169
 - E.2.2 Safety of the device | 172
 - E.2.2.1 Adverse events | 172
 - E.2.2.2 CT angiography evaluation for location and patency of the stent | 172
 - E.2.3 Efficacy of the device | 176
 - E.2.3.1 Improvement in angina score | 176
 - E.2.3.2 Improvement in exercise stress test parameters | 176
 - E.2.3.3 Improvement in ischemia in dobutamine stress echocardiography | 179
 - E.2.3.4 Improvement in ischemia in SPECT test | 179
 - E.2.3.5 One year clinical follow up | 179

- **E.3 Safety and functionality of an implantable device for non invasive monitoring of PAP in CHF**
 - E.3.1 Baseline Characteristics | 181
 - E.3.2 Safety results | 181
 - E.3.3 Functionality and accuracy results | 185

- **E.4 Measurement of Diurnal variation in PAP non-invasively using implanted device in CHF** | 188

- **E.5 Evaluation of exercise capacity and variation in PAP following exercise in CHF by non-invasive monitoring using the implanted device** | 190

- **E.6 Effect of Metoprolol XL Uptitration on PAP in CHF monitored non-invasively using the implanted device** | 192

- **E.7 Effect of Metoprolol XL on diurnal variation, Exercise induced variation in PAP and exercise capacity in CHF monitored non-invasively using the implanted device** | 196

- **E.8 One year clinical follow up of CHF Patients Implanted with the PAP monitoring device** | 199

F: DISCUSSION

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>200-219</td>
</tr>
</tbody>
</table>

G: CONCLUSIONS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>220-221</td>
</tr>
</tbody>
</table>

H: REFERENCES

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>222-253</td>
</tr>
</tbody>
</table>

Hetal Shah
L M College of Pharmacy, Ahmedabad, India