CHAPTER 4
RESEARCH METHODOLOGY AND DESIGN

<table>
<thead>
<tr>
<th>Para. No.</th>
<th>Particulars</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Hypothesis Formulation</td>
<td>96</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Dependent Variables for all Five Hypotheses</td>
<td>97</td>
</tr>
<tr>
<td>4.2</td>
<td>Conceptual Model of the Study</td>
<td>99</td>
</tr>
<tr>
<td>4.3</td>
<td>Research Design</td>
<td>101</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Approach</td>
<td>101</td>
</tr>
<tr>
<td>4.4</td>
<td>Survey Method</td>
<td>101</td>
</tr>
<tr>
<td>4.5</td>
<td>Questionnaire Design</td>
<td>102</td>
</tr>
<tr>
<td>4.6</td>
<td>Pilot Study</td>
<td>103</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Analysis of Pilot Study Data</td>
<td>105</td>
</tr>
<tr>
<td>4.7</td>
<td>Final Questionnaire</td>
<td>110</td>
</tr>
<tr>
<td>4.8</td>
<td>Sampling Design</td>
<td>111</td>
</tr>
<tr>
<td>4.8.1</td>
<td>Survey Population</td>
<td>111</td>
</tr>
<tr>
<td>4.8.2</td>
<td>Sample Determination</td>
<td>112</td>
</tr>
<tr>
<td>4.8.3</td>
<td>Sample Unit Selection</td>
<td>114</td>
</tr>
<tr>
<td>4.8.4</td>
<td>Questionnaire Survey</td>
<td>115</td>
</tr>
<tr>
<td>4.9</td>
<td>Statistical Tools and Techniques</td>
<td>116</td>
</tr>
<tr>
<td>4.9.1</td>
<td>Validity and Reliability of the Tools Used</td>
<td>116</td>
</tr>
<tr>
<td>4.9.2</td>
<td>Statistical Techniques Used</td>
<td>119</td>
</tr>
<tr>
<td>4.10</td>
<td>Mechanism to Assure Quality of the Study</td>
<td>121</td>
</tr>
</tbody>
</table>
CHAPTER 4

RESEARCH METHODOLOGY AND DESIGN

“A research design is the arrangement of conditions for collection and analysis of data in a manner that aims to combine relevance to the research purpose with economy in procedure.” (Claire1962 p.50)\(^{215}\)

The essence of academic research is to reflect on empirical material in the context of scholarly literature (Taylor et al. 2011)\(^{216}\). Having reviewed literature on the subject of this study in the previous chapter, the next step was to formally generate the research hypotheses, and lay down the research design keeping in mind the objectives of the study defined earlier. Accordingly, this chapter describes the methodology adopted for the study, covering the research type and approach, adoption of the scale of measurement, population and sampling design, data collection method adopted, and finally the statistical tools and techniques implemented.

4.1 Hypotheses Formulation

There are five Hypothesis statements considered for this study. Hypotheses statements are predictive statements capable of being objectively verified and tested (Kothari 2009 p.184)\(^{217}\). It relates an independent variable to a dependent variable and is a natural fallout of the objectives of the study. Research objectives for this study were acquired from the basic research problem in Chapter 1 as follows:-

i. To identify all possible employee competencies that could enhance financial performance of MSMEs;

ii. To categorise these competencies under the three employee competency factors of core, functional and leadership categories;

iii. To find out to what extent these employee competency factors and their constituent competencies enhance financial performance of MSMEs;

iv. To suggest measures for enhancing financial performance of MSMEs through better utilization of employee competency factors.

Literature review in the previous chapter has shown that employee competency factors in any business organization can be categorized as ‘value based core competencies’ applicable for all employees, ‘functional or job specific skills’ at work force or individual level, and ‘leadership traits’ at owners’ and managerial level. These could be composed of varying admixtures of knowledge, skills, attitudes and behaviours that exist within a person and which predict superior performance. Literature review and the assistance of subject experts have also assisted in identification of a total of 15 relevant employee competencies grouped under the three main headings of ‘core’, ‘functional’ and ‘leadership’ competencies. Review of existing literature from varied sources have also established the gaps in existing research work in the field of employee competencies in the MSME sector in India. An analysis of the effect of the above-mentioned types of competency factors on the financial performance of MSMEs in MIDC Bhosari, PCMC area would provide scientifically based inferences about the research problem.

4.1.1 Dependent Variables for all Five Hypotheses

Dependent variable for all five hypothesis statements has been considered to be ‘business performance’. Performance indicators for financial performance of a firm are traditionally considered to be Sales turnover, Profit After Tax (PAT), Market share and Return on Investment (ROI) (Ling 2000)\(^\text{218}\). Since review of literature on the measurement of performance in firms has indicated that ‘Profitability’ is a good indicator of performance of any business, the same was adopted as the common dependent variable for this study.

4.1.1.1 Hypothesis 1 (H1)

Independent Variable Employee competency factors as a whole has been considered as the independent variable for the first hypothesis statement. Intention of Hypothesis 1 is to establish the superior relationship between ‘higher levels of competencies’ and ‘profitability’ of MSMEs.

H1: MSMEs with higher competency levels have greater profitability.

4.1.1.2 Hypothesis 2 (H2)

Independent Variable In the literature review, the group of ‘value based organisational core competencies’ was identified as the most effective driver of business performance for most organisations. Accordingly, ‘value based organisational core competencies’ of MSMEs have been considered as the independent variable for the second hypothesis. Intention of the second hypothesis is to establish the superior relationship between ‘value based organisational core competencies’ and ‘profitability’ of MSMEs, as compared to the other types of employee competency factors.

H2: Value based organisational core competencies have greater impact than functional or leadership competencies on the profitability of MSMEs.

4.1.1.3 Hypothesis 3 (H3)

Independent Variable In the literature review, ‘quality consciousness’ of the organisation emerged as one of the most significant drivers of business performance of high growth companies. Accordingly, ‘quality consciousness’ has been considered as the independent variable for the third hypothesis. Intention of Hypothesis 3 is to establish the superior relationship between ‘quality consciousness’ and ‘profitability’ as compared to the other organisational core competencies.

H3: Quality consciousness is the most important value based organisational core competency for yielding higher profitability of MSMEs.

4.1.1.4 Hypothesis 4 (H4)

Independent Variable In the literature review as well as during interaction with some industry experts ‘planning and organising ability’ emerged as the most effective driver of business performance amongst leadership competencies. Accordingly, ‘planning and organising ability’ has been considered as the independent variable for the fourth hypothesis. Intention of Hypothesis 4 is to establish the superior relationship between ‘planning and organising ability’ and ‘profitability’ as compared to the other leadership competencies.

H4: Planning and organising ability is the most important leadership competency for yielding higher profitability of MSMEs.
4.1.1.5 Hypothesis 5 (H5)

Independent Variable In the literature review e.g. the Report of PMs TF on MSMEs 2010 as well as during interaction with all industry experts, lack of opportunities for training of employees in skills and competencies has emerged as the most crucial problem for Indian MSMEs. Accordingly, ‘training of employees in skills and competencies’ has been considered as the independent variable for the fifth hypothesis. Intention of Hypothesis 5 is to establish the superior relationship between ‘training of employees in skills and competencies’ and ‘profitability’.

H5: Training and development of employees in skills and competencies yield higher profitability of MSMEs.

4.2 Conceptual Model of the Study

Literature review and hypotheses formulation has enabled the researcher to formulate a conceptual model of study which is shown in Figure 4.1 below. Although each of the individual competencies e.g. ‘Quality Consciousness’ would directly contribute to its competency group e.g. ‘Core competencies’, which would then contribute to the ‘Overall competency level’, which would affect the dependent variable ‘Profitability’, the arrows have been shown to directly lead on to the dependent variable, so as to conceptualise the relationship between each independent variable and the common dependent variable for all five hypotheses.
Figure 4.1: Conceptual Model of Study
4.3 **Research Design**

This was a descriptive study whose purpose was to examine the nature of relationship between employee competencies and profitability of MSMEs. The study area for this research was in PCMC area in Pune, Maharashtra in India. Population of the study consisted of all MSMEs in the auto-component industry in MIDC Bhosari in PCMC area in Pune. The aim of the study was to collect appropriate data from suitable sample units so as to achieve the laid down objectives and test the five hypothesis statements specified above. Study selected sample units by a proportionate stratified sampling method in which samples of six types of MSMEs of auto-component sector were proportionately selected by systematic random sampling within each stratum.

4.3.1 **Approach** The first issue to be decided was the study method to be used: Quantitative, Qualitative or Multi-method. “A quantitative research methodology is appropriate where quantifiable measures of variables of interest are possible, where hypotheses can be formulated and tested, and inferences drawn from samples can be generalised and applied to entire populations. Qualitative methods on the other hand, are appropriate when the phenomena under study are complex, are social in nature, and do not lend themselves to quantification” (Liebscher 1998). Researcher experienced tremendous difficulty in fixing appointments for interaction with MSME owners as they appeared to be perpetually busy with solving day-to-day problems. Neither did the MSMEs have senior level managers who could answer the research queries, as these enterprises had centralised decision-making system by the owner-managers. Keeping the nature of respondents in perspective Quantitative method strategy was adopted to complete the research work within a reasonable time-frame. (Taylor et al. p. 38).

4.4 **Survey Method**

Survey method was adopted as the research strategy (Taylor et al. 2011, p.13) using a structured questionnaire. The Questionnaire was administered by the researcher in person to the MSME owner-managers due to three reasons: firstly, to reduce the possibility of non-response; secondly to conduct filling up in the manner of

an interview with structured questions whose responses could be recorded accurately; and finally, to collect first-hand information about the ground situation during the interaction to the extent feasible. One open-ended question was also included at the end of the Questionnaire to obtain inputs on any other relevant issues from the respondents.

4.5 Questionnaire Design

Focus on the aim and objectives of this study, supplemented by literature review and discussions with experts helped in preparation of the Questionnaire. Since secondary data on financial information of the MSMEs was not available from the governmental agencies like the DIC or MIDC, nor any other non-governmental agencies like MCCIA or CII, it was decided to obtain this as primary data directly from the MSMEs. Accordingly, the hypothesised relationship between the independent variables of employee competency factors and the dependent variable of profitability had to be established by direct questioning in the survey from the owners/managers of MSMEs.

It was important to gain and retain the interest of the respondents. Towards this purpose, a clearly worded covering letter was used. The questions were phrased in a simple and unambiguous language, and sequenced in a sensible manner starting from general data and finishing with specifics. Space was kept for open-ended comments as well. Assuming that the terminology of employee competency factors could cause some difficulty in comprehension by some respondents, their concepts were elaborated upon and the questions worded so as to make them less nebulous and easy to understand (Kothari, 1987 p.102).

The initial Questionnaire had the following composition:

- Covering letter expressing purpose of research and promising confidentiality of information;
- Introduction giving out simple guidelines for filling out the questions.
- **Part I** (12 questions) – General data sheet to collect factual information about the respondent and the company (age, type and size and financial details) as well as elementary profile of employees. These were in the form of filling in the blanks, and multiple choice questions.
Part II (10 questions) - To measure respondents’ assessment of the actual availability of the employee competencies in their enterprises, and the impact of ideal employee Competencies on Profitability of their enterprises using Likert Scale.

Part III (4 questions) – 2 questions to measure respondents’ assessment of availability of factors other than employee competency factors and their impact on profitability of their enterprises based on Likert scale, the third question dealt with the impact of other HR factors besides competencies like training on profitability, and the last question was open-ended to obtain any other suggestions.

Likert scale used to measure the respondent’s extent of agreement with each statement in Parts II and III was based on the five point scale as shown below in Table 4.1:

<table>
<thead>
<tr>
<th>Statement in positive format e.g. The employees of your enterprise have adequate competencies (tick in any one box below):</th>
<th>Least agree</th>
<th>Less agree</th>
<th>Fairly agree</th>
<th>More agree</th>
<th>Most agree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

(Source: Survey Questionnaire of this Study – Appendix ‘A’)

4.6 Pilot Study

The population size of MSMEs in PCMC MIDC Bhosari area selected for study was 2266. It was decided to select 20 respondents from this population (approximately 10% of this population size) for pilot study. The initial version of the Questionnaire had 26 questions, as explained above. To test the initial Questionnaire, 20 questionnaires were initially sent out to MSME entrepreneurs (Appendix B) with whom contact had been established through office bearers of MCCIA, Bank of Maharashtra and social networking. No separate details were given to them about filling up the Questionnaire except the covering letter and introduction. Six respondents called back and asked for specific clarifications. Thereafter, revised questionnaires were given to this pilot group, and their responses were tabulated and tested for validity, reliability and hypotheses verification.

The first change in questionnaire was regarding the actual number of ad-hoc employees employed by the MSMEs asked separately in Question 11. They had tremendous reservation on this issue because of various labour laws and their negative implications for the companies with the government labour department and various
inspectorates. Most of the pilot group stated that they would not like to give out the actual number of ad-hoc employees, stating that they had none or just a handful, whereas the researcher’s general information about the MSMEs indicated otherwise. Question 11 was therefore dropped from the Questionnaire, and this query was included as a sub-part of Question 9.

The second change was regarding financial information asked in Question 12. All respondents initially refused to provide specific data on financial performance of their enterprises like actual turnover, profit after tax etc. due to a colossal fear psychosis with government agencies, but agreed to specify profitability of their enterprises in general terms as less than 5%, 5 to 10% etc. This was also necessary as the statistical advisor Mr Manik Awale, advised the researcher to cross-tabulate the availability of employee competencies with the actual profitability of enterprises to meaningfully test the research hypotheses. Accordingly, the dropped question regarding ad-hoc employees was replaced by one to indicate profitability of the enterprise over the last three years in wide bands of five percentage points e.g. 0 to 5%, 5 to 10%, and so on. However, when this was tested in the second set of pilot study questions, it was seen that most of the respondents were giving vastly exaggerated profitability bands which would lead to wrong conclusions for the study. Hence, this too was changed in favour of binary response to this query in terms of ‘profitable’ or ‘not profitable’ after analysing the second set of responses from the pilot study respondents.

The third important issue that emerged during the data analysis of pilot study data was the non-suitability of existing Questions 13 to 22 which were asking the respondents to assess in two parts: the actual availability of competencies, as well as assess the impact of ideal employee competencies on their business profitability without relating these to their actual availability. The respondents were confused with this type of questioning. Hence, it was decided to modify the Questionnaire and ask respondents to indicate only their assessed impact of the specified competency on profitability of their enterprise as they felt about it, thus reducing Part II to six questions 13 to 18 only. These would then be correlated with the profitability indicated in Question 12 for hypothesis testing.

Data analysis of pilot sample showed that some of the sub-parts of Question 25 could be removed as they were not providing meaningful input for research
purposes, and could send confusing messages. Accordingly, Question 25 was dropped. Responses by the pilot study group were discussed with a group of experts which included MSME advisors of MCCIA, CII and MIDC PCMC office bearers. Based on these discussions, slight modifications were once again made. The third set of Pilot study results based on Final Questionnaire (shown at Appendix ‘A’) were measured for reliability, validity and hypotheses verification, before proceeding ahead with the main sample survey. Pilot data were also analysed by Spearman’s Correlation testing to check whether the MSMEs of different sizes and types in MIDC Bhosari showed significant variation in their various categories. The results indicated that the MSMEs in MIDC Bhosari displayed negligible variability amongst the MSMEs due to varying size or type of enterprise. Details of the pilot study tests are given below.

4.6.1 Analysis of Pilot Study Data Most of the tests dealt with Questions 12 to 20 which involve the dependent and independent variables. However, data in Questions 7, 8 and 11 were also used to find whether MSMEs belonging to different categories based on their size (Question 7), type of industry (Question 8) and attrition level (Question 11) differ in their relationships.

4.6.1.1 Pilot Sample Details The pilot sample constituted of 20 owner managers of MSMEs selected proportionately from all six types of industry (Question 8) shown in Figure 4.2 below.
They were distributed according to the size of industry (Question 7) as shown in Figure 4.3 below.

The Micro scale industries were the most difficult to identify as both the PCMC MIDC R&D as well as Pimpri Chinchwad Small Industries directory did not specify the size of the enterprises, nor were they registered with the MCCIA. Their names were finally obtained by reference from two owners of small scale enterprises.
4.6.1.2 Basic Statistical Measures for Pilot Study Statistical measures of pilot sample data consisting of Measures of average: Arithmetic Mean, Median and Mode; Measures of Variability: Standard deviation and Variance; Measures of shape: Skewness and Kurtosis; Standard errors of all measures of mean were examined. Perusal of the basic statistical measures of the pilot sample data indicated that the data was not normal. Hence non-parametric tests were done.

4.6.1.3 Cronbach Alpha Reliability Test of Pilot Study Cronbach Alpha reliability test for all the variables showed a Cronbach alpha value of 0.866 which was highly reliable. This was very close to that based on standardised items 0.876 which was based on Z value.

4.6.1.4 Kolmogorov-Smirnov One-Sample NP Test of Normality for Pilot Study This tests whether the distribution of the members of a single group differ significantly from a Normal or Uniform or Poisson or Exponential distribution. Significance values close to zero would indicate that the sample distribution actually displays a non-normal distribution (George and Mallory p.216). The significance values for most of the variables were very small which suggested that the data should be tested by non-parametric tests.

4.6.1.5 Spearman’s Rho Correlation Coefficients for Pilot Study Correlations are often called bivariate correlation to designate a simple correlation between two variables, as opposed to relationships among more than two variables, as practised in multiple regression analysis. Instead of Pearson ‘r’ correlations for normal distributions, Spearman’s Rho based on the rank order of values is more appropriate when variables are not normally distributed (George and Mallory p.124). Higher correlation values with significance less than 0.05 indicate that as the value of one variable increases, the value of the other value also increases, establishing a positive relationship between the two variables.

The correlation coefficients of major importance were those between the dependent variable Profitability of Question 12 and the various independent variables like the overall Competency level in Question 13, the three Competency factors in Question 14, the four individual Functional competencies in Question 15, the six Core competencies in Question 16, the five Leadership competencies in Question 17, and Training impact in Question 18. Besides the above, any correlation exhibited with the overall Management aspects in Question 19, and with the impact of hiring Qualified
managers in Question 20 were also of interest. Any correlation to be considered ‘significant’ had to be less than 0.05 for the accepted confidence level of 95%. Analysis of the Spearman’s Rho Correlation coefficients between the dependent variable Profitability and the various independent variables showed that none of the critical variables had a significance value less than 0.05, but in comparative terms with the other independent variables in their respective groups, the values were the lowest and closest to 0.05 for Overall competency level (.072) for Question 13, Core competencies (.061) for Question 14, Quality Consciousness (.079) for Question 16, partially supporting Hypotheses 1, 2 and 3. However, Hypotheses 4 and 5 were not supported as the significance values were higher for Planning and organising (.072) than Problem-solving (.066) in Question 17, and in the case of Question 18 significance value of Training was 0.116. Hence it would be prudent to use the One-Sample Chi-Square test, the Mann-Whitney Rank-Sum NP test, and Logistic Regression analysis for hypothesis testing, all of which could be used on non-normal distributions.

4.6.1.6 Mann-Whitney Rank-Sum U test for testing of H1 and H5 for Pilot Study This test is essentially a non-parametric equivalent of the t-test for two independent samples, when the distribution displays non-normality. The measurements of both groups taken together are ranked in order of increasing size, taking care to preserve the identity of measure (Taylor et al. 2011, pp. 150-151). The average rank of the two groups are compared. The U test determined whether that difference was significant.

For H1, Questions 12 and 13 data were analysed. Z value was -1.793 with a significance of 0.073, which showed that their difference was not significant.

For H5, Questions 12 and 18 data were analysed. Z value was -1.581 with a significance of 0.114, which showed that their difference was not significant.

4.6.1.7 One-Sample Chi-Square NP Test for H1 to H5 for Pilot Study This is a test of independence between the dependent and independent variables. A lack of independence indicated by large discrepancies between the observed and expected values indicated by large chi-square (x2) values and small significance levels, demonstrate lack of independence between the independent and dependent variables. This procedure conducts a one-sample chi square test rather than the more traditional chi-square test of cross-tabulated data. Small significance values would demonstrate
that the sample values deviate from the expected values thus discrediting the null hypotheses (George and Mallory p.217).

Question 12: Profitability had a significance value of 0.000;

Question 13: Impact of Overall Competency level on Profitability had a significance value of 0.022, supporting H1;

Question 14: Impact of the Competency factors showed a significance value 0.026 for Core Competency factors, supporting H2;

Question 16: Impact of Core competencies on Profitability showed a significance value of 0.047 for Quality consciousness, supporting H3;

Question 17: Impact of Leadership competencies on Profitability showed significance value of 0.022 for Planning and Organising competency, supporting H4;

Question 18: Impact of Training on Profitability showed a significance value of 0.041, supporting H5.

Significance values for all these variables indicated that their sample values deviated substantially from the expected values (thus discrediting the null hypotheses in each of these cases).

4.6.1.8 Friedman One-Way ANOVA NP Testing of H2, H3 and H4 for Pilot Study “The Friedman one-way ANOVA is similar to traditional Analysis of Variance with two notable exceptions: firstly comparisons in the Friedman procedure are based on mean rank of variables rather than on means and standard deviations of raw scores, and secondly, rather than calculating an F ratio, Friedman compares ranked values with expected values in a chi-square analysis” (George and Mallory p.218). Although the power of the Friedman operation is less than that of normal Analysis of Variance, but since the sample data deviated far from normality, the Friedman One-way ANOVA had to be used.

The significance value associated with the chi-square analysis (p = 0.000) indicated that there was a significant difference between the variables. Visual inspection indicated that Core competencies had the highest rank amongst Question 14 variables, supporting Hypothesis 2; Quality consciousness had the highest rank amongst Question 16 variables, supporting Hypothesis 3; However, Interpersonal Skills had a higher rank than Planning and Organising in Question 17, which did not support Hypothesis 4.
4.6.1.9 Logistic Regression for Hypothesis Testing of H2, H3 and H4 for Pilot Study

Logistic regression is an extension of multiple regression in which the dependent variable is not a continuous variable, and could have only two values, as in the case of this study, where Profitability is either ‘Yes’ or ‘No’. In logistic regression the value of dependent variable that is being predicted represents a probability, and it varies between 0 and 1.

(a) **Testing of H2 for Pilot Study** The logistic regression test indicated that ‘core competency’ was the only variable retained in the equation with the other two having been removed. The weighting value of core competencies (6.068) was much higher than that for the other two in Step 0 with a significance of 0.014. This supported H2, that core competencies have significant impact on profitability.

(b) **Testing of H3 for Pilot Study** ‘Quality consciousness’ was the only core competency selected for the equation with a significance of 0.026 in Step 0. Hence H3 was supported.

(c) **Testing of H4 for Pilot Study** ‘Planning and organising’ was the only variable selected for the equation. Hence H4 was supported.

4.7 Final Questionnaire

The final questionnaire (shown in Appendix ‘A’) had 21 questions organised in three sections as explained below:-

Part I: 12 questions in General Data Sheet as fill in the blanks or multiple choice. Question 12 was the most important for hypothesis verification of all five hypotheses, providing information about the only dependent variable - business profitability.

Part II: Six questions on respondents’ assessment of impact of the specified 15 employee competencies in their respective enterprises (Likert scale). Questions 13 to 17 cross-tabulated with profitability in Question 12 would be used for hypotheses verification of H1, H2, H3 and H4. Question 18 indicated the availability of training and development facilities for functional skills in their respective enterprises (Likert scale). Question 18 correlated with Question 12 would be used for hypothesis testing of H5.

Part III: Two questions on respondents’ assessment of impact of factors other than employee competencies on profitability of their enterprises (Likert scale). Question 19 was included to assess the significance of HR factor in general in comparison with financial, technological, marketing and operational factors on profitability. Question
20 was meant to obtain input on the assessed impact of one other important HR factor ‘hiring of professionally qualified managers’ on profitability. Question 21 was included as an open-ended query to obtain the respondents’ views on any other issue relevant to the topic of interest. The third part was included so as to throw further light on this research topic that could be relevant for this or future studies on MSMEs.

4.8 Sampling Design

In any type of research, it is extremely important to consider the size of the sample and its procedure of selection. An optimum sample is one which fulfils requirements of efficiency, representativeness, reliability and flexibility. The sample should be small enough to avoid unnecessary expenses and large enough to avoid intolerable sampling error.

“If inferences are to be made about a population from the sample, the sample must be ‘typical’ or representative of that population”.

Turney and Robb (1971, p.107)

4.8.1 Population The MSMEs in MIDC Bhosari area in PCMC belong to the automotive industry and were involved in supplying automobile parts and ancillaries to the OEMs of the automobile industry, as explained in Chapter 3 earlier. Although, they were all producing products and services for the automobile industry, they could be classified in to six homogeneous types of manufacturing industry which required to be considered as separate strata. Initially, it was attempted to obtain the details of these MSMEs from DIC Pune, where registration records of all MSMEs of Pune were supposed to be available. The researcher personally met the General Manager DIC Pune a number of times and obtained a list after four months of correspondence, but most of the details including even the establishment names, their addresses and contact numbers were found incorrect, or the businesses had closed down. Thereafter, MCCIA office in Pune was contacted and after some interaction, a list was obtained of only 145 SMEs which were the only ones which had registered with this Association. Contact with the Pimpri Chinchwad Small Industries Association Secretary Mr Nitin Bankar resulted in obtaining an industrial directory of Pimpri

Chinchwad (2009-10)221 which gave a list of 1967 MSMEs in Bhosari area. However, this was not an official directory, and the contact numbers and addresses of establishments turned out to be incorrect, and incomplete. Thereafter, in mid-2012, the researcher contacted the PCMC MIDC office and could obtain an official Reference and Directory (R&D), (2010-11)222 of all the MSMEs in Pune including those in MIDC PCMC in Bhosari. This directory indicated a population of 2266 enterprises located in Bhosari area, all belonging to the automotive industry. Although, both the directories did not have details of the size of enterprises and their financial details of turnover, profit etc., they had the types of enterprises and contact details. The population of MSMEs as listed in the R&D consisted of following composition:-

\begin{enumerate}
\item Metallic products and fabrication - 886 MSMEs
\item Auto and Auto ancillaries - 564 MSMEs
\item Machine and machine tools - 259 MSMEs
\item Process industry (plastics and chemicals/polymers) - 190 MSMEs
\item Electrical and Electronics - 106 MSMEs
\item Others (services, packaging, transportation etc.) - 261 MSMEs.
\end{enumerate}

\section*{4.8.2 Sample Determination} Since the population consisted of six homogeneous strata, it was decided to adopt proportionate stratified sampling technique for sample design (Taylor et al. 2011, p.46). The sample was proportionately distributed over all the strata with systematic random sampling within each stratum. The sample size was calculated as 108 by using a Penn State Program Evaluation Tipsheet #60 available on the internet223. The parameters for calculation of sample size were as follows:-

\textbf{Population size}: 2266 in 6 types of industry

221 Industrial Directory of Pimpri Chinchwad (2009-10). Pimpri Chinchwad Small Industries Association, Chinchwad, Pune.

112
Precision level: 5% margin of error

Confidence level: 95% which is standard for most social science applications

Variability: 20% assumed after consultation with the MSME experts and as confirmed from analysis of pilot study data (the entire population being more or less homogeneous as they all belonged to the automotive industry).

Base sample size for these parameters from the Penn State Tipsheet#60 for a population size of 2266 was obtained as 97 as average of 96 and 98. Extract of the Table is shown in Table 4.2 below.

Table 4.2: Table for Finding a Base Sample Size

<table>
<thead>
<tr>
<th>Population</th>
<th>Variability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50%</td>
</tr>
<tr>
<td>2000</td>
<td>333</td>
</tr>
<tr>
<td>3000</td>
<td>353</td>
</tr>
</tbody>
</table>

(Source: PENNSTATE Program Evaluation Tipsheet #60 Appendix 1 available at http://www.extension.psu.edu/evaluation/pdf/TS60.pdf.)

Assuming a response rate of 90% due to co-location of all the units within a small area and convenience of collecting the data through personally visiting the respondents, it was decided to attempt data collection from 108 respondents.

Appointment of Respondents: Due to complicated nature of the data to be collected, and MSMEs being mostly managed by the owners as managers, it was decided to have the questionnaires filled by the owners or senior managers if available.

Cross section of the 108 enterprises selected as sample based on proportionate stratified sampling was as follows:-

i. Metallic products and fabrication (886 MSMEs):– (886 / 2266) * 108 = 42 sample enterprises

ii. Auto and Auto ancillaries (564 MSMEs):– (564 / 2266) * 108 = 27 sample enterprises

iii. Machine and machine tools (259 MSMEs):– (259 / 2266) * 108 = 13 sample enterprises
iv. Process industry (190 MSMEs):– \((190 / 2266) * 108 = 8\) sample enterprises

v. Electrical and Electronics (106 MSMEs):– \((106 / 2266) * 108 = 5\) sample enterprises

vi. Other industries (261 MSMEs):– \((261 / 2266) * 108 = 13\) sample enterprises.

4.8.3 Sample Unit Selection: All 2266 MSMEs listed in the PCMC MIDC R&D were numbered as per the alphabetical order of their names within each strata i.e. Metallic product firms were listed as 001, 002 onwards to 886; Auto ancillaries were similarly numbered from 001, 002 onwards to 564; and so on for each stratum. Proportionate stratified samples were thereafter selected by random sampling within each stratum using the Stat Trek Random Number Generator\(^{224}\) on 10 May 2012 as follows:-

Metallic Products (42 sample units out of 886 MSMEs):-

Auto and auto ancillaries (27 sample units out of 564 MSMEs):-
209, 129, 521, 324, 350, 008, 318, 368, 519, 066, 294, 440, 301, 153, 448, 126, 113, 418, 217, 406, 253, 298, 014, 300, 422, 077, 266.

Machine and machine tools (13 sample units out of 259 MSMEs):-
036, 022, 135, 054, 108, 137, 118, 176, 201, 006, 113, 080, 239.

Process industry (8 sample units out of 190 MSMEs):-
117, 042, 075, 077, 159, 089, 164, 008.

Electrical and Electronics (5 sample units out of 106 MSMEs):-
084, 082, 009, 016, 022.

Other industries (13 sample units out of 261 MSMEs):-

114
4.8.4 Questionnaire Survey After the sample was selected randomly as explained above, their addresses were collected from the PCMC MIDC R&D 2010-11, and cross-checked with the Pimpri Chinchwad Small Industries Association directory 2009-10 as well as on the internet (wherever data was available). Questionnaires were sent out initially by normal mail to the official addresses as they appeared in these directories to all 108 sample units. A covering letter was attached to the questionnaires as well as a self-addressed stamped envelope (for their replies). Some questionnaires were returned saying that the addressee had moved out or address not found. Not a single respondent replied.

Next it was decided to try a more personal approach. Contact numbers of the respondents were collected and the researcher personally called the respondents, introduced himself and the research subject, and asked whether they were willing to participate in the survey. In a number of cases, these were landline numbers and were answered by the office staff who would not commit anything, and in some cases the numbers had changed. A few owners hesitatingly accepted without committing to any firm dates, but the majority excused themselves quoting they were busy and had no time for surveys of any kind.

Finally the researcher established contact with the Pimpri Chinchwad area Regional Manager of Bank of Maharashtra (BOM) Mr AD Deshpande through a mutual acquaintance and gave him the list of sample units. He checked with his eight branch managers of PCMC area and after confirmation that 69 of these 108 MSMEs were their clients, requested them to refer the researcher to these MSME owners for research survey. All this consumed more than nine months’ time, but the survey process could be started meaningfully for the first time in February 2013. Through the Bank of Maharashtra (BOM) reference, and with some references from the MCCIA office bearers the researcher could collect data from 100 out of the 108 sample units. The 69 owner managers referred by the BOM could refer the researcher to another 21 sample units through their personal contacts, and another 10 units could be contacted through the offices of the MCCIA Pune, thus allowing the researcher to obtain data from 100 sample units which is three more than the originally selected number of 97 from the Penn State Tipsheet#60. The researcher personally visited the MSMEs, and filled up the questionnaires after speaking with the owners. In a number of cases,
especially in micro and smaller enterprises, the owners had a number of doubts about the terminology used in the questionnaire for various types of employee competencies, but once explained they did not take much time in answering the questions.

4.9 Statistical Tools and Techniques

Detailed description about the statistical tools and techniques used for this study are given below.

4.9.1 Validity and Reliability of the Tools Used

By ‘validity’ is meant the success of a method in probing and / or assessing what it sets out to probe / assess (Taylor et al. 2011 p.2). Validity depends upon the fidelity with which it measures what it purports to measure (Best, 1983, pp.198-199)\(^\text{225}\). A test is valid when the performances which it measures correspond to the same performances as otherwise independently measured or objectively defined. The survey questionnaire was prepared with the particular purpose of identifying the employee competency factors driving profitability of MSMEs. So the statements included in the questionnaire were related to various areas influencing employee competencies. The validity of the questionnaire was therefore determined by depending on the judgement of MSME owner-managers and the panel of experts.

Validity of the Questionnaire was assessed through two approaches, viz. content validity and construct validity. Content validity is the extent to which a measuring instrument provides ‘adequate coverage’ of the topic under study (Kothari 2009 p.74). There is no numerical way to express content validity. There are two common varieties of content validity: face validity and sampling validity.

Face validity concerns the extent to which it measures that which it appears to measure according to the researcher’s subjective assessment. All the items of the instrument are supposed to have a common relevant thread (Taylor et al. 2011, p.2). After making up the survey questionnaire and the structured interview questions, the researcher reviewed each statement to assess its content as to the extent to which it is related to ‘effect of employee competencies on profitability of MSMEs’. To ascertain this assessment, the researcher consulted a number of subject experts. The panel of

experts questioned the relevance of Question 19 about the impact of various management aspects like Financial, Marketing, HR etc. The researcher explained that since ‘employee competencies’ form part of HRM, it would be relevant to understand what the respondents felt about the relative importance of HRM as compared to the other management domains financial, operations, marketing etc. regarding its impact on ‘profitability’. This would help in meeting one of the objectives, which was to recommend measures for enhancing profitability of MSMEs through better utilisation of HR driven employee competency factors. The panel accepted this logic and agreed to retain it as a part of the questionnaire though it directly does not assist in testing any of the hypotheses.

Sampling validity assesses whether a given population of situations is adequately sampled by the measuring instrument, that is, does the content of the instrument adequately represent the content population of the property being measured. The underlying assumption of sampling validity is that every variable has a content population consisting of an infinite number of items (statements, questions, or indicators) and that a highly valid instrument constitutes a representative sample of these items. The employee competencies (15 competencies) that could enhance profitability of MSMEs were determined by consulting MSME owners, MSME experts of MCCIA and CII, and interviewing DIC authorities. In addition, all the literature available and listed in Chapters 1 and 2 on MSMEs were also referred during preparation of the questionnaire. The competencies were selected over the complete range of employee competency factors under all three heads of value-based organisational core competencies, leadership and managerial competencies, and functional competencies. The sample units were also selected by stratified proportionate sampling from all six strata of MSMEs. These measures ensured that the research methodology covered all relevant factors regarding employee competencies and profitability of MSMEs (Best and Kahn, 1999, p.219)226. So the data collection tools had content validity.

Construct validity involves relating a measuring instrument to an overall theoretical framework in order to determine whether the instrument is tied to the

concepts and theoretical assumptions that are employed. Cronbach and Meehl (1955)227, early proponents of construct validity, have observed that “whenever a tester asks what a score means psychologically or what causes a person to get a certain test score, he is asking, what concepts may properly be used to interpret the test performance.” The theoretical notions one has about the property being measured lead the investigator to postulate various kinds and degrees of relationships between the property and other specified variables. In order to demonstrate construct validity of a measuring instrument, an investigator has to show that these relationships do in fact hold. Cronbach and Meehl (1955) described the logical process of construct validation in the following way: “first, a proposition that an instrument measures a certain property – say, property A – is set forth; second, the proposition is inserted into the present theory of property A; third, working through the theory, one predicts other properties that should be related to the instrument and properties that should exhibit no relation to the instrument; finally one collects data that empirically confirm or reject the predicted relations. If the anticipated relationships are found, the instrument is considered valid.”

The items in the test were prepared by the investigator with the help of the guide and experts in MSMEs. The statements were constructed in such a way that all respondents could understand them easily. The generated nature of the items enabled the respondents to answer them appropriately. The construct of each item was based on the purpose of the study. The basic concept was that the performance of MSMEs in India was seriously affected due to lack of properly skilled manpower with appropriate competencies. The purpose of this was accordingly framed to identify the employee competency factors that would contribute towards greater profitability of MSMEs. The pilot study conducted earlier showed that the measuring instrument was able to confirm the predicted relations. Therefore, it could be assumed that construct validity of the test was achieved.

Reliability is a criterion that refers to the consistency of data stemming from the use of a particular research method (Taylor et al. 2011 p. 3). Reliability addresses the issue of whether the instrument will produce the same results each time it is

administered to the same person in the same setting (George and Mallery 2011 p.222). A measure is reliable to the extent that repeated application of it under the same conditions give the same result. The results of the pilot study were subjected to the Cronbach Alpha reliability test. Cronbach’s Alpha is designed as a measure of internal consistency; that is, do all items within the instrument measure the same thing? Based on the formula: Alpha Value = r k / (1+ (k-1) r), where ‘k’ is the number of variables considered, and ‘r’ is the mean of the inter-item correlations. The Alpha value is inflated by a larger number of variables and hence there is no set interpretation as to what is an acceptable alpha value. The Alpha value varies between 0 and 1. A rule of thumb given out in (George and Mallery 2011, p. 231) states that a value more than 0.9 indicates excellent reliability, more than 0.8 is good, and more than 0.7 is acceptable. The pilot study data had an Alpha Value of 0.866 which indicated that the survey questionnaire had good reliability. The data collected from the main sample of 100 respondents was also subjected to Cronbach Alpha reliability test, whose details will be discussed in the next chapter on data analysis.

4.9.2 Statistical Techniques Used

4.9.2.1 Goals of Data Analysis There were four principal goals of data analysis (Taylor et al. 2011 pp.135 – 136):

Goal 1: How could we get a ‘feel’ for our results, measures or responses? It was desirable as a first step to gain an understanding of the character, the shape, of each variable of the data set.

Goal 2: What were average values of the research variables and how much variability was there?

Goal 3: To what extent were different variables related to each other? This was basically looking for relevant correlations.

Goal 4: To what extent were discernible patterns statistically significant? Goal 4 was primarily focused on hypothesis testing with some support from Goal 3.

4.9.2.2 Goals 1 and 2 Goals 1 and 2 were addressed together for which the following statistical techniques were employed to analyse the data:-

Arithmetic Mean, Median, Standard Deviation and Skewness using standard formula to study the nature of scores. These were complemented by bar charts. Examination of pilot study data indicated that it was not normally distributed to the required extent. Because of this non-normality, and due to likert scale being ordinal in nature, non-parametric tests were used. Kolmogorov-Smirnov one-sample test for non-parametric data was used to determine the normality of distribution (McMahon 2001)229. A significance less than 0.05 indicated that the distribution was indeed non-normal and accordingly, balance of the non-parametric tests could be used.

4.9.2.3 Goal 3 Identification of connections between variables (Goal 3) was the next step. Since scatter diagrams of the pilot study data did not show any evidence of a non-linear correlation, nor were there extreme outliers, correlation coefficients were calculated. Spearman’s correlation coefficients (a non-parametric equivalent to the Pearson’s correlation coefficients) were obtained to examine correlations.

4.9.2.4 Goal 4 Hypothesis Testing Finally, the most important Goal 4 of ascertaining aspects of statistical significance was undertaken. Following tests were conducted:-

Cronbach Alpha Reliability test was implemented as explained earlier to establish consistency of data collected;

Non-parametric tests: More than one non-parametric tests were adopted as these are inherently weaker than their parametric equivalents, and more than one positive result would help in confirming the hypothesis better.

H1 and H5 (involving one independent variable): Mann-Whitney rank-sum U test was used as a non-parametric equivalent of t-test for all variables. However, its primary application was for testing Hypotheses 1 and 5 involving Questions 12-13 and Questions 12-18 respectively, in which there was only one independent variable, for which there was no other appropriate non-parametric test.

H1 to H5 (involving one or more than one independent variable): One-Sample Chi-Square test in place of the traditional Chi-Square test of cross-tabulated parametric data, to test the lack of independence between the independent and dependent

variables of all the hypotheses. This would be in support to the other hypotheses tests, but primarily for the Mann-Whitney rank-sum U test.

H2, H3 and H4 (involving more than one independent variable): *Friedman One-way ANOVA* in place of the traditional ANOVA which tests whether three or more groups differ significantly from each other. Since this test alone would not be strong enough, it was decided to supplement it with a Regression analysis which could be applied to non-normal data. *Logistic Regression analysis* was selected in place of the traditional Multiple Regression analysis as the dependent variable ‘profitability’ was dichotomous i.e. ‘profitable’ or ‘not profitable’.

The effect of independent variable ‘overall competency level’, with external variables like ‘type’ and ‘size’ of business, ‘attrition level’ and ‘hiring of qualified managers’ on the dependent variable ‘profitability’ was subjected to logistic regression test to examine the effect of extraneous variables on H1.

Hypotheses Tests’ Confirmation - Causal Path Analysis: Bento & Bento (2004)\(^{230}\) have recommended use of Causal Path Analysis techniques for testing causality of all research data. Being non-parametric, it was decided to test this research data by assigning partial correlation coefficients to all the variables, and drawing a Causal Path Diagram with the Ordinal Partial Coefficients to confirm the hypotheses tests.

Factor Analysis: Finally, Factor Analysis was completed to identify a smaller number of factors that could be used to represent relationships among sets of inter-related variables. This would also indicate the factors that should be pursued for improving the performance of MSMEs in India.

4.10 Mechanism to Assure Quality of the Study

Quality of this study could be ensured by maintaining control of bias and by following the scientific method. Research methodology was implemented systematically and rigorously by diligently following the laid down stages of research. Firstly research guide and subject experts were consulted regularly to obtain advice whenever in doubt. Literature review was comprehensive with almost 240 sources

being referred for obtaining relevant input for this subject, and to identify the research gap and to arrive at the research problem. Thereafter Hypotheses were formulated based on the research gap and the study objectives. Survey method approach was adopted as it was felt to be ideally suited for this type of social sciences research. Utmost care was taken to ensure that the survey questionnaire was related to the research question and hypotheses could be tested adequately. Pilot study was conducted to test the survey questionnaire, and after pilot data analysis and having consulted the experts, it was modified. It was ensured that the final questionnaire consisted of relevant questions which could be easily answered by the respondents and data could be analysed to test the various hypotheses. Sample was selected randomly to maintain data reliability.

Data was collected personally by the researcher and they were immediately tabulated in MS Excel format for checking their accuracy and completeness. Collected data was stored in a safe place in the office so that they could be accessed whenever necessary. Data analysis was implemented by the researcher himself by understanding SPSS 17.0 package so that results of various tests could be confirmed by more than one statistical test for every hypothesis to ensure dependability. All data was initially checked by the Cronbach Alpha Reliability test before proceeding ahead with the other tests for hypotheses. Since the survey used likert scale which was ordinal data, and since the Kolmogorov-Smirnov one-sample test indicated non-normality, non-parametric tests were used for hypotheses testing to maintain dependability of test results.