CONCLUSION
In conclusion our studies during this thesis work have contributed to the existing knowledge of heterocyclic chemistry in the following aspects.

1. In (-)-Galanthamine hydrobromide, an improved process has been developed to minimize all the known and unknown impurities within the ICH limits.

2. Complete impurity profile of (-)-Galanthamine hydrobromide was studied, the unknown impurities and novel impurities are detected, synthesized and characterized.

3. In (-)-Galanthamine hydrobromide two polymorphs identified, characterized and the stable crystalline and amorphous forms were prepared.

4. A novel commercially cost effective process was developed for Memantine hydrochloride.