TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Particulars</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>XI</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>XVI</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Motivation for this Research work</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Problem Statement</td>
<td>9</td>
</tr>
<tr>
<td>1.3</td>
<td>The Electronic Nose</td>
<td>9</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Semiconductors – metal oxide gas sensors</td>
<td>10</td>
</tr>
<tr>
<td>1.4</td>
<td>Aroma Scan (A32S)</td>
<td>12</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Data acquisition</td>
<td>13</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Data treatment</td>
<td>14</td>
</tr>
<tr>
<td>1.4.2.1</td>
<td>Principle Component Analysis (PCA)</td>
<td>15</td>
</tr>
<tr>
<td>1.4.2.2</td>
<td>Discriminant Function Analysis (DFA)</td>
<td>15</td>
</tr>
<tr>
<td>1.5</td>
<td>Objectives of the Thesis</td>
<td>16</td>
</tr>
<tr>
<td>1.6</td>
<td>Contribution of the Thesis</td>
<td>17</td>
</tr>
<tr>
<td>1.7</td>
<td>Organization of Thesis</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>The Artificial Olfaction System</td>
<td>19</td>
</tr>
<tr>
<td>2.1</td>
<td>The Biological Nose</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Electronic Nose Principles</td>
<td>22</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Need to sensitize the nose electronically</td>
<td>22</td>
</tr>
</tbody>
</table>
2.3 Sensing Technologies
 2.3.1 Gas Sensor Operation 26
2.4 Sensing an odorant 27
2.5 Types of Electronic Nose Sensors 29
 2.5.1 MOSFET and Metal Oxide Sensors 29
 2.5.2 Piezo Electric Sensors Including the QCM and SAW 34
 2.5.3 Conductivity Based Sensors 35
 2.5.4 Optical and spectroscopic sensors 40
2.6 Commercially Available E-Nose Systems 39
2.7 Electronic-Nose Applications 41
 2.7.1 Beverages 43
 2.7.2 Cooking Oils 44
 2.7.3 Eggs and Dairy Products 44
 2.7.4 Medical Pathology 45
2.8 Literature Review 47

3 Research Methodology 64
3.1 Data Processing Techniques 66
 3.1.1 Pre-processing 66
 3.1.2 Signal Preprocessing 67
 3.1.3 Unsupervised Pattern Recognition Algorithms 69
 3.1.4 Supervised Algorithms 69
3.2 Statistical Pattern Recognition 71
 3.2.1 Multiple Linear Regression (MLR) 72
 3.2.2 Partial Least Squares (PLS) 73
 3.2.3 Cluster Analysis (CA) 74
3.2.4 Principal Component Analysis (PCA) 74

4 Results and Discussion 79

4.1 Introduction 79

4.2 Development in Simulation of Sensor Models 80

4.2.1 Model Description 81

4.2.2 Sensor Simulation Model Design 82

and results validation

4.2.3 Simulation Results 86

4.3 Use of Array of Sensors 92

4.4 Applications and comparison of PCA and PLS technique on TGS and MICS sensors 105

4.4.1 Classification using PCA Analysis for quality assessment of Licorice data base D1 107

4.4.2 PCA Analysis of D1 data base using data difference preprocessing 108

4.4.3 PCA Analysis of D1 data base using data fractional preprocessing 110

4.4.4 PCA Analysis of D1 data base using data relative preprocessing 113

4.4.5 PLS Analysis of D1 data base using data difference preprocessing 116

4.4.6 PLS Analysis of D1 data base using data fraction preprocessing 119

4.4.7 PLS Analysis of D1 data base using data relative preprocessing 122

4.4.8 PCA Analysis of Organic Gases and Compounds D2 data base using data...
difference preprocessing
4.4.9 PCA Analysis of Organic Gases and Compounds D2 data base using data fractional preprocessing
4.4.10 PCA Analysis of Organic Gases and Compounds D2 data base using data relative preprocessing
4.4.11 PLS Analysis of Organic Gases and Compounds D2 data base using data difference preprocessing
4.4.12 PLS Analysis of Organic Gases and Compounds D2 data base using data fraction preprocessing
4.4.13 PLS Analysis of Organic Gases and Compounds D2 data base using data relative preprocessing

5 Conclusion and Future Scope 143
5.1 Conclusion 143
5.2 Future Work 149

APPENDICES 151
A Specifications of MiCS Sensors 151
B Specifications of TGS Sensors 155
C List of Publications of Work 163

BIBLIOGRAPHY 164