BIBLIOGRAPHY


10. CHESTER M "Neural Network, a tutorial, PTR, Prentice Hall, Englewood Cliffs; NY 1993


37. HINSON R, "Robotics-Environment a major factor in robot selection", Industrial Engineering, 15 (10),1983,30-32


41. GUANGHSU A C and SIMS A P, "A case based reasoning approach to robot selection", Dr. Chang web.htm


43. HAMMING R W, "Coding and information theory", Mccgraw-Hill book inc NY

44. HUANG Y PHILIP, "Procedure of evaluating, selecting robots", 44, Industrial Engineering, April 84


57. MOUTAZ K and BOOTH, E.D., "Fuzzy clustering procedure for evaluation and selection of industrial robots", Journal of Manufacturing Systems, vol 14, no 6, 1995, 244-251


63. MANOLESCU, 'N I., "Systematization and Classification of PlaneJointed Driving Mechanisms with Degree of Mobility 'Total' (M^3 = 2) and 'Partial' (M^#3 = 2)." Revue Roumaine des Sciences Techniques, Serie de Mecanique Appliquee, 10: 999-1042 1965.


77. MRUTHYUNJAYA, T.S., "kinematic Structure of Mechanisms Revisited."

78. NOF S Y, LETCHMAN H, "Robot Time and Motion provides means for evaluating alternative work methods"

79. OFFODILE O F, LAMBAT B K, DUDEK R A, "Development of a computer aided robot selection procedure (CARSP)


87. RAO, A.C., "Circuit and cut-set Matrices to Aid Detection of Isomorphism", Journal Institution, of Engineers (I), vol. 65, pp. 177-180, 1985.


90. RAO, A.C, and VARADA RAJU, D. "Application of Hamming


103. SHAH, Y.J., DAVIDA, J.L., and McCARTHY, M.K., "Optimum Features and


137. RAO, A.C, "Circuit and cut-set Matrices to Aid Detection of Isomorphism", Journal Institution, of Engineers (I), vol.36, pp; 177-180, 1985.
