CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Introduction</td>
<td>1-13</td>
</tr>
<tr>
<td></td>
<td>Problem undertaken</td>
<td>11</td>
</tr>
<tr>
<td>II</td>
<td>Basic theories</td>
<td>14-82</td>
</tr>
<tr>
<td></td>
<td>2.1 Some simple models</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2.1.1 Energy band models</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>(i) Schön-Klasens model</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>(ii) Lambe-Klick model</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>(iii) Donor-acceptor model</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2.1.2 Configuration - co-ordinate model</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>(i) Cascade mechanism</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>(ii) Resonance transfer mechanism</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>(iii) Exciton migration mechanism</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>2.2 Mechanism of photoconductivity</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>2.2.1 Electronic transitions</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>(i) Absorption and excitation</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>(ii) Trapping and capture</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>(iii) Recombination mechanism</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>2.2.2 Photoconductivity process</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>(i) General concept</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>(ii) Lifetime</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>(iii) Photoexcitation dependence of mobility</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>(iv) Photosensitivity</td>
<td>47</td>
</tr>
</tbody>
</table>
(v) Quasi or steady state Fermi level 48
(vi) Demarcation level 51
(vii) Simple kinetics 54
(viii) Growth and decay curves 58
(ix) Electrode effects 61
 (A) Nonohmic contacts 62
 (B) Ohmic contacts 65
 (C) Injection 68
2.2.3 Models for photoconductivity 89
 (i) Junction models 89
 (ii) Homogeneous materials 72
2.2.4 Recombination kinetics 74
 (i) One centre models 78
 (A) Without traps 76
 (B) With traps 78
 (ii) Two centre models 79

Chapter III: Experimental details 83-118

3.1 Preparation of materials 83
 3.1.1 Powders 83
 3.1.2 Crystals 84
 3.1.3 Thin films 85
 (i) Physical vapour deposition 85
 (A) Thermal evaporation 86
 (a) Resistive heating 86
 (b) Sublimation 87
(c) Flash evaporation 87
(d) Arc evaporation 87
(e) Exploding wire technique 88
(f) Laser evaporation 88
(g) RF heating 88
(h) Electron beam heating 89

(B) Molecular beam epitaxy 90
(C) Activated reactive evaporation 90
(D) Ion plating 91

(ii) Sputtering techniques 92
(A) dc diode sputtering 92
(B) RF diode sputtering 93
(C) Magnetic sputtering 93
(D) Ion beam sputtering 93

(iii) Chemical deposition 94
(A) Chemical vapour evaporation 94
(B) Spray pyrolysis 95
(C) Electro depositon 96
(a) Electrolytic deposition 96
(b) Electroless deposition 97
(c) Anodic-oxidation 97
(D) Solution growth 98
(E) Screen printing 98

3.1.4 Present method of preparation of thin films 99
3.2 Thickness measurement

3.2.1 Electrical method

(i) Film resistance

(ii) Capacitance monitors

(iii) Ionization monitors

3.2.2 Microbalances monitors

(i) Microbalances

(ii) Quartz-crystal monitor

3.2.3 Mechanical method (stylus)

3.2.4 Radiation absorption and

Radiation-emission method

3.2.5 Optical interference method

(i) Photometric method

(ii) Spectrophotometric method

(iii) Interference fringes

(iv) X-Ray interference fringes

3.2.6 Present method of thickness measurement

3.3 Measuring arrangements

3.3.1 Rise and decay studies

3.3.2 Spectral studies

(i) Excitation spectra

(ii) Transmission spectra
3.3.3 Characterization studies

(i) Different methods

(A) Topography

(B) Bulk structure

(C) Surface structure

(D) Chemical analysis

3.3.4 Present methods

Table 3.1

Chapter IV: Photoconducting studies of films

4.1 Introduction

4.2 Results and discussions

4.2.1 Darkcurrent

4.2.2 Photocurrent

4.2.3 Photocurrent/Darkcurrent ratio

4.2.4 Relative photosensitivity factor

4.2.5 Trap depth calculations

Table (4.1 to 4.6)

Chapter V: Spectral studies of films

5.1 Introduction

5.2 Results and discussions

5.2.1 Excitation spectra

5.2.2 Transmission spectra
Chapter VI: Characterization studies 181-187

6.1 Introduction 161

6.2 Results and discussions 161
 6.2.1 SEM studies 181
 6.2.2 XRD studies 169

Tables (6.1 - 6.4) 182-185

Future scope of the present work 188

References 187-203

Reprints of papers