List of Figures

Figure 1.1 Schematic showing the calandria vessel with important structural components of the PHWR. .. 2
Figure 1.2: Schematic showing the coolant channel assembly depicting various important components.. 3
Figure 1.3: The effect of radial grain thickness and radial basal pole texture on diametral creep of the pressure tube in PHWR.. 4
Figure 2.1: (a) Unit cell of hexagonal closed packed (hcp) crystal. (b) Some of the important planes and directions of the hcp crystals.. 10
Figure 2.2: The phase diagram of binary Zr-2.5Nb alloy also showing the metastable phase transformations.. 11
Figure 2.3: Phase transformations from the high temperature beta phase 12
Figure 2.4: The various deformation modes observed in the hcp zirconium alloys. 16
Figure 2.5: The three principle direction of relevant for the texture and mechanical properties the zirconium alloy tubular product.. 17
Figure 2.6: Development of texture during different deformation experienced for various forming process.. 19
Figure 2.7: A typical distribution of temperature and neutron flux from inlet to the outlet of the pressure tube in a PHWR reactor ... 20
Figure 2.8: Diametral strain observed along the length of the pressure tube in a PHWR reactor for two conditions (i) backend of PT at outlet (ii) backend of PT at inlet 22
Figure 2.9: A typical observed value of the sag along the length of the pressure tube. 22
Figure 2.10: The strain rate measured during in service operation of pressure tube having different Ft-Fr value, .. 24
Figure 2.11: Variation of diametral strain with grain thickness of the alpha phase. 24
Figure 2.12: The combines effect of the grain thickness alongwith the texture on diametral strain... 25
Figure 2.13: The fabrication flowsheet for manufacturing of CANDU PHWR pressure tubes ... 27
Figure 2.14: The fabrication flowsheet for manufacturing of Indian PHWR pressure tubes--28
Figure 2.15: Fabrication flow sheet for manufacturing of pressure tube by heat treatment route(a) TMT1 (b) TMT2. ... 29
Figure 2.16: The evolution of microstructure during fabrication of Indian PHWR tube.-----31
Figure 2.17: : The final microstructure of the Indian and CANDU pressure tube material ---32
Figure 2.18: A typical basal pole texture obtained in the cold worked pressure tube -------33
Figure 2.19: The evolution of texture during different stages of pressure tube fabrication
(Cross sections Rolling Plane (RP), Long Transverse (LT) and Short Transverse (ST)-------34
Figure 2.20: Development of lattice strain in the alpha in presence and absence of beta phase
---35
Figure 2.21: The change in the transverse texture with increase in (a) extrusion ratio (b)
extrusion temperature---36
Figure 3.1: Quadruple melted Ingot by VAR melting method--38
Figure 0.2: Radial forge press machine used to forge from (i) 550 dia to 330 mm dia and (ii) 350 dia to 230 dia billet ---40
Figure 3.3: 230 mm diameter double stage radially forged zr-2.5Nb alloy ingots ---------------41
Figure 3.4: Schematic of Piercing Operation of the billet for extrusion of blanks--------------42
Figure 3.5: (a) Horizontal hot extrusion press (b) Hot extruded Zr-2.5Nb alloy blanks-----43
Figure 3.6: Horizontal Vacuum Annealing Furnace and its Schematic representation ----------44
Figure 3.7: Specimen preparation for texture parameter determination by Kearns method. (a)
Sample cutting plan to obtain samples from three principal directions from the pressure tube
off cut. (b) method for obtaining rectangular flat samples --------------------------------47
Figure 3.8: Standard Projection of Diffracting Planes of Alpha Zirconium, c/a = 1.59 showing
17 main peaks used for kearns parameter determinations-----------------------------------48
Figure 4.1: Different fabrication trials --50
Figure 4.2: SEM micrographs after final breaking of cast structure (at 230 mm dia stage); (a)
Single press forge routes (routes A and B), (b) Double press forge route (route D), (c) Double
radial forge route (route E), (d) Single extrusion routes (routes C and F) -------------------53
Figure 4.3: TEM micrographs after final breaking of cast structure (at 230 mm dia stage) in
transverse direction (centre); (a) Single forge routes (Route A and B), (b) Double press forge
route (Route D), (c) Double radial forge route (Route E), (d) Single extrusion---------------55
Figure 4.4: Bright field TEM micrographs of beta quenched hollow billets of Zr-2.5Nb alloy
showing fully martensitic microstructures; (a) internally twinned martensites and (b)
internally slipped martensites.---56
Figure 4.5: Secondary electron SEM micrographs of extruded blanks; (a) and (b) leading and
trailing ends respectively of the longitudinal section of tube blank extruded with low ER
(7.3:1) (cast structure broken by single extrusion, route F), (c) and (d) leading and trailing
ends respectively of the longitudinal section of tube blank extruded with high ER (12.75:1) (cast structure broken by double press forging, route D), (e) and (f) leading and trailing ends respectively of the longitudinal section of tube blank extruded with high ER (12.75:1) (cast structure broken by double radial forging, route E), (g) and (h) transverse section of (e) and (f) respectively. The blanks extruded with low ER are showing larger variation along the tube length in comparison to the blanks extruded with higher ER value.--57

Figure 4.6: TEM analysis of the extruded pressure tube blank of Zr-2.5Nb alloy; (a) Bright field micrograph showing fully dynamically recrystallized α and β microstructure, (b)-(c) TEM-EDS analysis showing composition of α and β phases respectively.------------------59

Figure 4.7: Bright field TEM micrographs of pressure tube blanks extruded with different extrusion ratios; (a) leading end and (b) trailing end of tube extruded with ER 7.3:1(route F), (c) leading end and (d) trailing end of tube extruded with ER 12.75:1(route E). --------------61

Figure 4.8: Bright field TEM micrographs of Zr-2.5%Nb alloy pressure tube after intermediate annealing showing β phase (a) as stringer between α/α interface and (b) as globulized particles and their composition from EDS analysis in (c) and (d) respectively.----63

Figure 4.9: Secondary electron SEM micrographs of pressure tube after double radial forging, extrusion of blank with extrusion ratio (12.75:1) and 20% cold reduction by pilgering (route E); (a) and (b) leading and trailing ends respectively of longitudinal section (c) and (d) are transverse sections of (a) and (b) respectively. ---65

Figure 4.10: (a) and (b) Secondary electron SEM micrographs of leading and trailing ends of pressure tube after breaking of cast structure by single extrusion, tube blank extrusion with low ER (7.3:1), double pass pilgering with intermediate annealing followed by autoclaving (route F), (c) and (d) Secondary electron SEM micrographs of leading and trailing ends of longitudinal section of pressure tube after breaking of cast structure by double radial forging, tube blank extrusion with high ER (12.75:1), single pass pilgering followed by autoclaving (route E), (e) and (f) transverse section of (c) and (d) respectively. ------------------------------66

Figure 4.11: Bright field TEM micrographs; (a) leading and (b) trailing end of pressure tube manufactured through double pass pilgering with intermediate annealing(route F), (c) leading and (d) trailing end of pressure tube manufactured through single pass pilgering (route E). -67

Figure 5.1: Fabrication flow sheet for Heat Treated Pressure Tube -------------------------------74

Figure 5.2: Cooling curve obtained from quenching dilatometer -------------------------------76

Figure 5.3: Micrograph after first extrusion (a) optical-longitudinal (b) optical-transverse (c) TEM-longitudinal ---77
Figure 5.4: Microstructures after beta quenching (a) optical (b) TEM -------------------77
Figure 5.5: Microstructures after second extrusion (a) SEM-longitudinal (b) SEM-transverse
(c) TEM-longitudinal ---78
Figure 5.6: Microstructures after first pilgering (a) SEM-longitudinal (b) SEM-transverse (c)
TEM-longitudinal ---79
Figure 5.7: Microstructures after (α+β) gas quenching from 883°C (soaked for 30 min) and
quenching with cooling rates (a) 100°C/sec (b) 50°C/sec (c) 25°C/sec and (d) 10°C/sec -----80
Figure 5.8: Microstructures after (α+β) gas quenching from 870°C (soaking for 30 min) and
quenching with cooling rates (a) 100°C/sec (b) 50°C/sec (c) 25°C/sec and (d) 10°C/sec -----82
Figure 5.9: Microstructures after (α+β) quenching of first pass pilgered Tubes (a) SEM
micrograph and (b) TEM micrograph --83
Figure 5.10: TEM longitudinal micrograph after second pass pilgering ---------------------84
Figure 5.11: Micrographs after water quenching from 883°C (soaked for 30 min) and aged at
515°C (24 hrs) (a) SEM-longitudinal (b) SEM-transverse (c) TEM-longitudinal -----------85
Figure 5.12: Micrographs after water quenching from 883°C (soaked for 30 min) and aged at
540°C (24 hrs) (a) SEM-longitudinal (b) SEM-transverse (c) TEM-longitudinal -----------86
Figure 5.13: TEM micrographs after Autoclaving (2900C/120 hrs)-------------------------86
Figure 6.1: Schematic explaining the meshing scheme, various components of the model
geometry and various interactions of the model with the bounding surfaces. ------------92
Figure 6.2: Optimizing convective heat transfer and friction coefficients to conform to
experimental ram force curve represented by solid black line, “Shop Floor Data”---------96
Figure 6.3: Schematic geometry of extrusion setup showing billet, mandrel, die angle, fillet
radius, outer diameter (OD), inner diameter (ID), wall thickness (WT).-------------------97
Figure 6.4: The temperature contours in a typical simulation. The location of the region of
highest temperature is shown. The variation of this temperature with time is used to judge the
expected variation in the leading and tailing end of the resulting extrudate. ------------98
Figure 6.5: Ram force variation for various ram velocities. ----------------------------100
Figure 6.6: The leading (LE) and tailing end (TE) temperature profiles for ram speeds of (a)
20 mm/s, (b) 47 mm/s, (c) 75 mm/s and (d) 125 mm/s. ---------------------------------101
Figure 6.7: The leading and trailing end cross sectional temperature profiles at low ram
velocities of (a) 1 mms−1 and (b) 3 mms−1. At low ram velocities, the chilling effect of ram
dominates the deformation heating, leading to larger temperature gradients along the length
as compared to those across the cross section --102
Figure 6.8: Ram force variation for different reduction ratios.------------------------ 103
Figure 6.9: Sequence of extrudate profiles for reduction ratios of (a) 6, (b) 8, (c) 10, (d) 12, (e) 14.4 and (f) 20.--- 103
Figure 6.10: The leading (LE) and tailing end (TE) temperature profiles for Reduction Ratios of (a) 6 and (b) 20.--- 104
Figure 6.11: The temperature gradient profiles for Reduction Ratios of (a) 6 and (b) 20. -- 105
Figure 6.12: Ram force variation for different values of preheat temperatures.--------- 105
Figure 6.13: The leading (LE) and tailing end (TE) temperature profiles for billet preheat temperatures of (a) 785°C, (b) 805°C, (c) 825°C and (d) 855°C--------------------------- 106
Figure 6.15: The leading (LE) and tailing end (TE) temperature profiles for fillet radii of (a) 1 mm, (b) 5 mm, (c) 15 mm and (d) 20 mm. ------------------------------------- 107
Figure 6.14: Ram force variation for different values of fillet radii.--------------------- 107