


Chapter 7

References


Boullier, A and Bird, DA and Chang, MK and Dennis, EA and Friedman, P and Gillotre-Taylor, K and Horkko, S and Palinski, W and Quehenberger, O and Shaw, P and Steinberg, D and Terpstra, V and Witztum, JL, Scavenger


Cha, DR and Kang, YS and Han, SY and Jee, YH and Han, KH and Han, JY and Kim, YS and Kim, NH, Vascular endothelial growth factor is increased during early stage of diabetic nephropathy in type II diabetic rats, J. Endocrinol., 183, 183-194, 2004.

Cha, DR and Kang, YS and Han, SY and Jee, YH and Han, KH and Kim, HK and Han, JY and Kim, YS, Role of aldosterone in diabetic nephropathy, Nephrol. Carlton., 10, 37-39, 2005.

Cipollone, F and Chiarelli, F and Iezzi, A and Fazia, ML and Cuccurullo, C and Pini, B and De-Cesare, D and Torello, M and Tumini, S and Cuccurullo, F and Mezzetti, A, Relationship between reduced BCL-2 expression in circulating


Deutsch, DG and Goligorsky, MS and Schmid, PC and Krebsbach, RJ and Schmid, HH and Das, SK and Dey, SK and Arreaza, G and Thorup, C and Stefano, G


Eijkelkamp, WB and Zhang, Z and Remuzzi, G and Parving, HH and Cooper, ME and Keane, WF and Shahinfar, S and Gleim, GW and Weir, MR and Brenner, BM and De-Zeeuw, D, Albuminuria is a target for renoprotective therapy independent from blood pressure in patients with type 2 diabetic nephropathy: Post Hoc analysis from the Reduction of Endpoints in NIDDM with the

Ebenezer, PJ and Mariappan, N and Elks, CM and Haque, M and Francis, J, Diet-induced renal changes in Zucker rats are ameliorated by the superoxide dismutase mimetic TEMPO, Obesity (Silver Spring), 17, 1994-2002, 2009.


Fujihara, C and Noronha, IL and Malheiros, DMA and Antunes, GR and Oliveira, IB and Zatz, R, Combined mycophenolate mofetil and losartan therapy arrests


Forbes, JM and Coughlan, MT and Cooper, ME, Oxidative stress as a major culprit in kidney disease in diabetes, Diabetes, 57, 1446-1454, 2008.


Fujita, H and Fujishima, H and Takahashi, K and Sato, T and Shimizu, T and Morii, T and Shimizu, T and Shirasawa, T and Qi, Z and Breyer, MD and Harris, RC and Yamada, Y and Takahashi, T, SOD1, but not SOD3, deficiency accelerates diabetic renal injury in C57BL/6-Ins2(Akita) diabetic mice, Metabolism, 61, 1714-1724, 2012.


Gorin, Y and Ricono, JM and Wagner, B and Kim, NH and Bhandari, B and Choudhury, GG and Abboud, HE, Angiotensin II-induced ERK1/ERK2


Gill, PS and Wilcox, CS, NADPH oxidases in the kidney, Antioxid. Redox Signal., 8, 1597-1607, 2006.


Guo, C and Martinez-Vasquez, D and Mendez, GP and Toniolo, MF and Yao, TM and Oestreicher, EM and Kikuchi, T and Lapointe, N and Pojoga, L and Williams, GH and Ricchiuti, V and Adler, GK, Mineralocorticoid receptor


Chapter 7

References


Han, KH and Kang, YS and Han, SY and Jee, YH and Lee, MH and Han, JY and Kim, HK and Kim, YS and Cha, DR, Spironolactone ameliorates renal injury, and connective tissue growth factor expression in type II diabetic rats, Kidney Int., 70, 111-120, 2006.

Han, SY and Kim, CH and Kim, HS and Jee, YH and Song, HK and Lee, MH and Han, KH and Kim, HK and Kang, YS and Han, JY and Kim, YS and Cha, DR, Spironolactone prevents diabetic nephropathy through an anti-inflammatory mechanism in type 2 diabetic rats, J. Am. Soc. Nephrol., 17, 1362-1372, 2006a.


Irita, J and Okura, T and Jotoku, M and Nagao, T and Enomoto, D and Kurata, M and Desilva, VR and Miyoshi, K and Matsui, Y and Uede, T and Denhardt, DT and Rittiling, SR and Higaki, J, Osteopontin deficiency protects against


Koya, D and Jirousek, MR and Lin, YW and Ishii, H and Kuboki, K and King, GL, Characterization of protein kinase C beta isoform activation on the gene


Kang, YS and Park, YG and Kim, BK and Han, SY and Jee, YH and Han, KH and Lee, MH and Song, HK and Cha, DR and Kang, SW and Han, DS, Angiotensin II stimulates the synthesis of vascular endothelial growth factor through the p38mitogen activated protein kinase pathway in cultured mouse podocytes, J. Mol. Endocrinol., 36, 377-388, 2006.

Ko, GJ and Kang, YS and Han, SY and Lee, MH and Sang, HK and Han, KH, Pioglitazone attenuates diabetic nephropathy through an antiinflammatory mechanism in type 2 diabetic rats, Nephrol. Dil. Trans., 23, 2750-2760, 2008.


Exacerbation of diabetic nephropathy by hyperlipidaemia is mediated by toll-like receptor 4 in mice, Diabetologia, 55, 2256-2266, 2012.

Lowry, OH and Rosebrough, NJ and Farr, AL and Randal, RJ, Protein measurement with the folin phenol reagent, J. Biol. Chem., 265-275, 1951.


Lewis, EJ and Hunsicker, LG and Clarke, WR and Berl, T and Pohl, MA and Lewis, JB and Ritz, E and Atkins, RC and Rohde, R and Raz, I, Collaborative Study Group. Renoprotective effect of the angiotensin-receptor antagonist irbesartan


Li, JH and Huang, XR and Zhu, HJ and Oldfield, M and Cooper, M and Truong, LD and Johnson, RJ and Lan, HY, Advanced glycation end products activate Smad signaling via TGF beta-dependent and independent mechanisms:


Lee, SH and Yoo, TH and Nam, BY and Kim, DK and Li, JJ and Jung, DS and Kwak, SJ and Ryu, DR and Han, SH and Lee, JE and Moon, SJ and Han, DS and Kang, SW, Activation of local aldosterone system within podocytes is involved in apoptosis under diabetic conditions, Am. J. Physiol. Renal Physiol., 297, 1381-1390, 2009.


Mori, H and Inoki, K and Masutani, K and Wakabayashi, Y and Komai, K and Nakagawa, R and Guan, KL and Yoshimura, A, The mTOR pathway is highly


Nagao, T and Okura, T and Irita, J and Jotoku, M and Enomoto, D and Desilva, VR and Miyoshi, K and Kurata, M and Matsui, Y and Uede, T and Higaki, J,


Park, CW and Kim, HW and Ko, SH and Chung, HW and Lim, SW and Yang, CW and Chang, YS and Sugawara, A and Guan, Y and Breyer, MD, Accelerated diabetic nephropathy in mice lacking the peroxisome proliferatoractivated receptor-α, Diabetes, 55, 885-893, 2006.


Ribaldo, PD and Souza, DS and Biswas, SK and Block, K and Lopes-de-Faria, JM and Lopes-de-Faria, JB, Green tea (Camellia sinensis) attenuates nephropathy by downregulating Nox-4 NADPH oxidase in diabetic spontaneously hypertensive rats, J. Nutr., 139, 96-100, 2009.


Sekizuka, K and Tomino, Y and Sei, C and Kurusu, A and Tashiro, K and Yamaguchi, Y and Kodera, S and Hishiki, T and Shirato, I and Koide, H,


Studer, RK and Craven, PA and DeRubertix, FR, Antioxidant inhibition of protein kinase C-signaled increase in transforming growth factor-beta in mesangial cells, Metabolism, 46, 918-925, 1997.


Sugimoto, H and Shikata, K and Wada, J and Horiuchi, S and Makino, H, Advanced glycation end products-cytokine-nitric oxide sequence pathway in the


Sindhu, RK and Koo, JR and Roberts, CK and Vaziri, ND, Dysregulation of hepatic superoxide dismutase, catalase and glutathione peroxidase in diabetes:


Trachtman, H and Koss, I and Bogart, M and Abramowitz, J and Futterweit, S and Franki, N and Singhal PC, High glucose enhances growth factor-stimulated


Thallas-Bonke, V and Thorpe, SR and Coughlan, MT and Fukami, K and Yap, FY and Sourris, KC and Penfold, SA and Bach, LA and Cooper, ME and Forbes, JM, Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway, Diabetes, 57, 460-469, 2008.


Vidotti, DB and Casarini, DE and Cristovam, PC and Leite, CA and Schor, N and Boim, MA, High glucose concentration stimulates intracellular renin activity


Wang, X and Shaw, S and Amiri, F and Eaton, DC and Marrero, MB, Inhibition of the Jak/STAT signaling pathway prevents the high glucose-induced increase


Winiarska, K and Malinska, D and Szymanski, K and Dudziak, M and Bryla, J,
Lipoic acid ameliorates oxidative stress and renal injury in alloxan diabetic
rabbits, Biochimie, 90, 450-459, 2008.

Wang, H and Li, Y and Liu, H and Liu, S and Liu, Q and Wang, XM and Shi, Y and
Duan, H, Peroxynitrite mediates glomerular lesion of diabetic rat via

Xu, X and Chen, P and Wu, X and Feng, X and Wang, Q and Zhang, L and Renal

Xue, C and Siragy, HM, Local renal aldosterone system, and its regulation by salt,
diabetes, and angiotensin II type -1 receptor, Hypertension 46, 584-590, 2005.

Xia, L and Wang, H and Goldberg, HJ and Munk, S and Fantus, IG and Whiteside,
CI, Mesangial cell NADPH oxidase upregulation in high glucose is protein
kinase C dependent and required for collagen IV expression, Am. J. Physiol.

Xia, L and Wang, H and Munk, S and Frecker, H and Goldberg, HJ and Fantus, IG
and Whiteside, CI, Reactive oxygen species, PKC-beta1, and PKC-zeta
mediate high-glucose-induced vascular endothelial growth factor expression in

Xia, L and Wang, H and Munk, S and Kwan, J and Goldberg, HJ and Fantus, IG,
Whiteside CI. High glucose activates PKC-zeta and NADPH oxidase through


Yang, Y and Ha, H and Lee, HB, Role of reactive oxygen species in TGF-β1-induced epithelial-mesenchymal transition [Abstract], Nephrol Dial Transplant, 18, 300, 2003.


Zheng, F and Fornoni, A and Elliot, SJ and Guan, Y and Breyer, MD and Striker, LJ and Striker, GE, Upregulation of type I collagen by TGF-β in mesangial cells


