List of Figures

2.1 Typical tetrahedral finite element in x-y-z plane 35

2.2 (a) Complete prism, volume \(abc\), (b-e) elements 1 2, 3, and 4 are shown respectively, they are congruent and each has volume \((abc)/6\). (f) Element -5, it has volume \((abc)/3\). The numbering (a) refers to the connected set of tetrahedra, whereas that in (b-f) follows the unconnected element scheme ... 42

2.3 Element 1 with superimposed Cartesian axis 43

2.4 Element 5 with superimposed Cartesian axis 46

2.5 (a) Adjacent tetrahedral elements considered to be electrically disjoint (b) adjacent tetrahedral elements with potential required to be continuous and nodes renumbered accordingly .. 49

2.6 Mess generation for the parallel plate capacitor configuration with prism element for finite element analysis ... 56

2.7 Mess generation for co-axial cylindrical capacitor configuration with prism element for finite element analysis ... 57

3.1 (a) Top view of the fringe field capacitor (b) Sensor cup with bar 71

3.2 Timer circuit using IC 555... 72

3.3 Illustration of shaking process of a tea leaves sample. 73

3.4 Block Diagram of the instrumentation System.. 73

3.5 Finite element assembly for the portion of the sensor under consideration 75
LIST OF FIGURES

3.6 Capacitance value of the sensor for different height envelope above the sensor surface ... 78

3.7 Change in frequency of the timer circuit of three tea brands for different moisture content .. 81

4.1 Scheme adopted for the measurement of temperature of a hot chamber .. 93

4.2 Timer circuit using IC 555 ... 94

4.3 Plot of temperature (°C) vs ΔC ... 97

4.4 Plot of Δϕ vs ΔC .. 98

5.1 A basic configuration of an optical fiber refractometer .. 103

5.2 Configuration of a tapered multi-mode fiber refractometer .. 104

5.3 (a) Cross sectional side view along the length of the multi mode optical fiber sensor and (b) side view of the multi mode optical fiber sensor configured for the measurement of refractive index of a liquid .. 108

5.4 Scheme of the experimental setup adopted for the measurement of refractive index of a liquid .. 108