CHAPTER IV
Textile Production

Raw materials

1. *Eri* and *Eri*-culture:

Assam was the original home of the *eri* silkworm. Its culture is distinctly divisible in two parts of which the first part carries the culture proper involving rearing, while the second part embraces the processing of cocoons, spinning cocoons into yarn, marketing of yarn and weaving of fabrics.¹

In Assam the *eri*-culture did not develop as an industry inspite of the fact that Assam was the original home of the *eri* silkworm and its culture was exceedingly popular among most of the tribes, particularly the Bodo-group of tribes. Shyamchaudhuri and Das have commented that weaving in *eri* silk is an ethnocultural speciality by which the tribes belonging to the Bodo-group can be distinguished from other tribes of Assam.²

Eriiculture was fairly a domestic industry among the Tiwas living in both the plains and the hills. Every Tiwa household in the plains reared *eri* worms in the past. The same situation did not persist after the independence of India and the *eri* culture has now become the vocation of some individual families in the rural areas. In the hills also the culture, i.e. rearing of non-mulberry silkworm and its production, which was once vigorously cultured, is fast losing its hold from most areas. The situation

2. *The Lalung Society*: p. 129, *Eri* culture was also known to some people of Monkhmre culture living in the Jaintia Hills in which the Tiwas were said to have dwelt. The Khasis, however, do not wear either silk or cotton. See Gurdon: *The Khasis*, p. 59.
leading to unprecedented decline in eri-culture can be attributed largely to
the dependence of the people on outside market for mill-made yarn and
woven fabric which are readily available at their door-steps.

The *eri* silkworm is reared on the leaves of the castor plant called
eranda in Sanskrit, from which the term *eri* is derived. The plant is locally
known as the *eragoch* in Assamese and *erundi* among the Tiwas. The
plant is considered by far the best among all other food plants devoured
by the worm because its feeding yields large size cocoon enriched in silk
content.3

The researcher has observed that the rearers of *eri* worms in Barapujia
have been feeding the larva on the leaves of a variety of plants apart from
the castor plant. *Simalu-alu* (arrowroot), *amita* (papaya), *gomari* (Hill teak),
dimoru (ficus) and *gulanchi* (plumeria of the white variety) are some of the
plants the leaves of which are given to the larva. The cocoons varies in
size and quality according to the host plants. The worms reared on the
leaves of *keseru* and *gomari* are said to be hard. The soft variety of co­
cocoons are derived from worms fed on the leaves of *simalu-alu*. These
cocoons are white and as good as cotton.

A family can rear five or six batches of *eri* silkworm in a year. The
life cycle of the worms is divided into four stages—egg, larva, pupa encased
in cocoon and adult moth4 S. Endle5 has furnished us with an authentic
description of the rearing practice followed traditionally by the Kacharis of
Assam. The description in short is as follows : The *eri* cocoons are fas­
tened in long festoons a few feet above the ground. Some fifteen days after
this exercise, the insects make their appearance in butterfly form. The
rearer collects them to keep them in a receptacle. They lay eggs in great

3. Dr. D.C. Sarkar: *Ericulture in India*, p. 5.
4. Ibid, p. 10
numbers after three or four days. It takes another fifteen days to hatch the eggs. Thereafter the insects form cocoons in a further period of fifteen days. To assist the insects to form cocoons they are carefully placed in some dry plantain or mango leaves kept on bamboo baskets or bamboo platforms. The insects refuse food before they set about the formation of cocoon. It is necessary that the rearers should keep the insects quarter "scrupulously clean" during the fifteen days preceding the formation of the cocoon.

Balairam Senapati, an authority of Tiwa culture, has given us a similar account in respect of rearing of the eri-worms by the Tiwa women of Barapujia. It is narrated in the account that the eri-worms are given tender castor leaves when they are young. Mature foliages are provided gradually. Some people feed the worms also with the leaves of the keseru plant. Dr Sarkar has let us know that the leaf of the keseru plant is suitable for the worms which are reared between the month of August and December, because the foliages remain tender in other months. The cocoons kept in the folds of dry plantain or mango leaves is called mounting. Traditionally the folds are called the jalis. Dr. Sarkar has let us know that mounting is done in some hills in 6 feet long bamboo splitted in the middle and tied together by a rope or creeper after keeping the ripe worms in between. "Cocoons mounted in this way are uniform in size and clean."

All serviceable cocoons need degumming soon after they are collected from the jalis. Traditionally degumming is done in alkali potash derived from burning the plantain leaves. For this the cocoons collected from the jalis are tied in a piece of cloth and allowed to boil in lye. Boiling in lye

6. *Amsa*, p. 2
7. *Ericulture in India*, p. 7
9. *Amsa*, p. 2
softens the cocoons. Thereafter the sheaths and the pupae are separated from each other. The pupae makes a delicacy. The sheaths are again packed in plantain or areca leaf to keep them for some days in the tender sheaths of areca nut. As a result, the cocoon sheaths get softened due to fermentation. Thereafter the sheaths are rinsed in water and squeezed and expanded. The sheaths thus expanded are piled one above the other atop a number of bamboo sticks each stick carrying 15 to 20 sheaths. The counting of sheaths harvested from a batch of cocoons is done according to the number of sticks.

The whole process beginning from rearing of the cocoon, spinning and weaving is a long drawn one which entails much labour and care of the rearers. It takes time about six months to make a wrapper of *eri* silk from the spinning of the yarn to the weaving of the cloth. Weaving is done by the grown up women. But spinning involves the labour irrespective of young or grown up girls, housewives and old women in a family. The old women render their services mostly in nurturing the worms and the cocoons. They grow castor plants in their homestead or collect its leaves from places where it grows wild or from the homestead of another domicile to feed the worms.

Formerly the system of reciprocal help was evolved for carrying out spinning of the *eri* cocoons and other agricultural practices. This system was called *hadari*. A guild called *hadari-khel* was constituted by the young girls and also by the middle aged women of the village. Each *hadari-khel* was constituted of five girls or five women. The guilds were formed with the expectation that each member of the guild would receive reciprocal services from other members of the group in turn. The institution of *hadari-khels* of the male who contribute personal labour in the agricultural field

10. The chrysalis of the *eri* silkworm is eaten roasted or curried by many tribes. See Lyall: *The Mikirs*, p. 13
or in accomplishing other corporate activities has since disappeared or fast losing its hold in many villages. The Tiwa scholar, Balairam Senapati, has let us know that the institution of female hadari-khel is somehow alive among a few middle-aged women and also among the young girls who do not go to school for study.11

The hill Tiwas practise a different form of institution involving reciprocal help in their corporate life. They organize kil of four types. The significant one is the panthai-khel organized among the youths of the samadi. Another khel called poroi-khel is a unit composed of the members of the entire khel, which is a conglomeration of clans. The third is called kil-paro constituted of ten to fifteen people. On the other hand, the fourth one called kil is a unit of two persons.

The Tiwa women are expert weavers. Formerly they did everything from spinning to weaving and making clothes for the entire family. The eri cloth used as wrapper was greatly priced.12 It was considered to be a valuable property in a family for it could provide pecuniary help at times of need. Sometimes rent levied on land was cleared by exchanging eri-cloth instead of money. Formerly it was believed that a girl who did not know how to weave and make cloths for the family would have poor chance of entering into nuptial bond with a good groom.

In 1926, some Tiwa women of Barapujia, Topakuchi and Morigaon earned appreciation of excellence in weaving. They supplied 250 pieces of Khadi cloths to decorate the principal shed for holding the Pandu session of the Indian National Congress. The artisans themselves spun cotton threads and did the fabrics. The institutions of hadari was behind their success in reaping laurels. The swadesi movement inspired the women both tribal and

11 \textit{Amsa}, p.p. 1-2

12 That an eri cloth is of great value is reported by S. Endle in his book \textit{The Kacharis} p. 22. Endle appreciates the cloth as being at once soft and warm as well as remarkably strong and durable. He holds high opinion about the cloth in respect of its durability. In this context he narrates a story of obtaining an eri-chadar by him from a Kachari church woman who gave the cloth to him as payment of her Church dues. The piece of cloth, according to him, survived unwounded inspite of many and frequent barbarous washing for many years.

non-tribal for *eri* spinning. In Nagaon some volunteers were engaged during the movement and also in a few couple of years after independence for distribution of *eri* cocoons among the village women. In return, the women artisans were paid money for their labour in spinning. The value of their labour was determined in terms of the amount of spun yarns they could return against the cocoons they were supplied for spinning.

The researcher has come across some cotton fabrics made of hand spun yarns of old days in the hills. It is also observed that few household in the hills possesses cotton-ginning tool of old days. The researcher was informed that the cotton thread was not friend to some traditional dyes. She has come across a few pieces of cotton clothes which were dyed in eco-friendly dye-stuff. All these factors lend support to the existence of the culture of spinning and weaving of cotton threads in the hills. Some scholars argue that cotton weaving was perhaps not an old occupation with the Bodo tribes.¹³ In support of it, they have cited the examples of the Garos, and certain Naga and Arunachal tribes with whom cotton weaving was not an original trait. J.H. Hutton¹⁴ has let us know that the Angami Nagas living in the lower villages in the hills grew cotton in plenty and used wooden machine bought from the Kacha Nagas for seeding and spindle for spinning. J.P. Mills describes the and of spinning methods weaving of cotton clothes known to the Ao Nagas with the information that it was precisely the same as that found among the Semas and Lhotas.¹⁵ Major A. Playfair¹⁶ has given us a different story about the Garos on the cultivation of cotton. According to him cotton was a major crop next to rice in most part of the Garo hills. H. Borgohain writes about cotton

14. *The Angami Nagas* p. 60
15. *The Ao Nagas* pp. 90-91
cultivation and the procedures of cotton weaving known to the Adis of Arunachal Pradesh.17

2. Dye and Dye stuff:

The art of dyeing was inseparably associated with traditional textile of many tribes.18 The number of colours known to some is two19 and to some it is five20 or six.21 The dyeing stuff mainly consists of plant, leaves of plants, creepers and root of creepers, lac and stone. Generally the boil and soak methods are used in dyeing the fabrics or the threads. Some colours are eco-friendly with some threads and some are not.

The Hill Tiwas developed their own colour perception around patterns in weaving. In recent years, the old perception has received setback in the face of readymade colour threads available in the markets. As a result, the labour of the weavers in extraction of juice from plants, plant leaves etc. is lessened altogether and the need of colouring the threads and the fabrics in accordance with the old principles is no longer felt by the artisans. The ultimate consequence is that the people have lost a rich heritage of their own. The researcher has come across only a handful of men and women in the hills who are aware of their tradition. They can easily recollect from memory the names of the dye-stuff and the old method of dyeing with natural dyes in the case of colouring threads for their own looms. In the plains, there is hardly any man or woman who can tell us about the old tradition.

17 \textit{Handloom and Handicrafts of the Adis}, pp. 15-17

19 Mills: \textit{The Ao Nagas}, p. 92 Blue and red are known to the Ao Nagas.

20 Hutton: \textit{The Angami Nagas}, p. 62. The tribe knew the colour of black, blue, scarlet, pale terracotta and yellow.

21 Elwin: op. cit., p. 94: The colours are black, yellow, dark blue, green, brick-red and madder.
Formerly Assam produced largest variety of dye stuff.22 It is worth mentioning that a good number of plants having dyeing properties are equally important for medicinal values.23

The hill Tiwas are acquainted with the use of a number of colours. The clothes of old days possessed by some households reveal that old people practised in a palette of three primary colours—red, blue and yellow. In the scheme, red and blue predominated while yellow was occasionally employed. The red colour called \textit{sut-koja} was obtained from lac. Another variety of red was obtained from a plant named \textit{haju-phang}. The colour was named \textit{haju} after the plant. Blue was extracted from the leaves of a shrub called \textit{nili}. Blue had a different variety which was derived from the leaves of \textit{urum} plant. \textit{Urum} could be the \textit{rum} known to the Assamese weavers of old days. Turmeric was used as a dye-stuff for yellow dye.

The most important of red dyes of antiquity were all obtained from animal sources. Lac was perhaps one of the oldest of all known red dyes.24

The host trees, plants and shrubs to rear lac insect may vary from place to place. In India, the state of Jharkhand which is producing quality lac the host trees are \textit{kusum} (\textit{Schlcichera oleosa}), \textit{palas} (\textit{Butea monosperma}) and \textit{ber} (\textit{zigiplus jujuba}).25 The hill Tiwas rear lac insects in \textit{motusa-phang}, \textit{pipal} (\textit{Ficus ruphii : pakori-bor} in Assamese), \textit{rohor} plant (\textit{cijanus cajan}) and castor plant—\textit{erundi} (\textit{Ricinus communis}). The \textit{motusa-phang} is a dwarf plant. Formerly the hill Tiwas grew it as orchard plant. Similarly, the seeds of \textit{rahar} plant were sown along with paddy for

\begin{thebibliography}{9}
\bibitem{22} For a long list of plants having the properties of dye, see Pradip Chaliha: \textit{Purani Asomar Karikari Silpa}, pp. 118-120. See also R. Saikia: \textit{Social and Economic History of Assam}, pp. 51 and 76-77.
\bibitem{23} A.C. Dutta: \textit{Dictionary of Economic and Medicinal Plants}. See plants under serial 8, 11, 18, 25, 26, 164, 173, 183, 184, 221, 229, 259, 406, 483, 640, 697, 745, 602, 825, 896, 991, 1086, 1104, 1176.
\bibitem{24} \textit{Dyeing and Printing with Natural Dyes}, p. 27
\bibitem{25} Narendra Prasad: \textit{Employment News}, 3-9 march, 2007, His article on lac cultivation.
\end{thebibliography}
rearing the insect. Major Playfair has let us know that the lac insects thrive equally on four plants. The insects reared on *rahar* do no harm to the plants, neither they prevent the plants from bearing good crop.

Lac insects are allowed to spread out in the trees in the month of May-June. Small baskets made of split bamboo strips are made to shelter the insects. The baskets are tied to the tree twigs to lay eggs. The resinous substance released by the insects takes 6 to 8 months time to become serviceable. After that the lacs are collected. At the time of collection certain quantity is kept apart in the baskets for seed and tied to the trees again for second or future collections.

Lac is pounded for obtaining red dye. In the hills it is pounded in a wooden mortar. During the course of pounding boil water is poured onto it to transform it into liquid. The skeins of yarns are allowed to drench in the liquid and boiled till the water content completely evaporates leaving the skeins tainted.

By another method, lac-red dye is obtained by boiling the powdered lac with lemon-juice (the ratio being 1 lemon : 5 litres of water) and a handful of leaves of *khusum* (*letoku – Baccaurea sapida*) plant. The boiling method is called *rusa*. Lac is not used in any fibre other than the *eri*-silk.

The hill Tiwas also developed a variety of red called *haju*. It was extracted from the rinds collected from the roots of the tree of the same name. Boiling method as it was adopted in the case of the lac-dye was followed. The dyeing process involved activities in two phases. In the first phase, sesame (*Sesamum indicum*) or the seeds of *nahar* (*Mesua ferrea*) are pounded to mix with the boiling yarns. Boiling would continue for

one to one and half hour time. Thereafter the skeins are dried in the sun. The second phase involved rubbing the skeins with powder derived from the roots of the *haju* plant. Only the rinds sliced off from the roots were carefully cleared and dried to make the powder. A little amount of water is sprinkled on the skeins in order to squeeze in powder. The process was repeated several times till the threads absorb the dye context, each time the skeins were exposed to sun rays for removal of moisture.

A shade of deep purple red called *koja-boro* was obtained by mixing lac-red with *haju* powder. This time both the root rinds and the leaves of the plant called *haju-mikhri-lai* were bruised to make the powder. Some amount of tepid water was mixed with the powder to make it liquid. Lac-red was applied to it to make a decoction in which the threads were allowed to soak for sometime.

Blue is called the king of dyes.\(^{28}\) It is the indigo content available in some plants. The hill Karbis, according to Lyall\(^ {29}\), derive indigo from a species of *Strobilanthes* generally identified as *Strobilanthes flacidifolius*. The source of indigo for the Khasis is a plant called *u noli*, which according to Gurdon, is perhaps the wild indigo or ram, of the Shan settlers in the Assam Valley.\(^ {30}\)

Indigo is the earliest dye-staff in the world to have its record in history. The discovery of 5000 years old mummy wrapped in indigo-dyed cloth is an example in this regard.\(^ {31}\)

The Tiwa nomenclature for indigo is *nili*. The plant which bears indigo content in its leaves as well as in the tender twigs is also called *nili*. The Bodo group of tribes knew the use of this dye from very old days. The dye was also favourite of some Nagas and the tribes of Arunachal Pradesh.

\(^{28}\) *Dyeing and Printing with Natural Dyes*, p. 26
\(^{29}\) *The Mikirs*, p. 10
\(^{30}\) *The Khasis*, p. 27
\(^{31}\) *Chemistry of Dyes and Principles of Dyeing*, p. 2
The leaves of the nili plant are pounded in a wooden morter. Alkali potash called khar is mixed with the leaves at the time of pounding. It is derived from tender bamboo burnt to ashes. Water is mixed with the pounded substance of the leaves and kept in an earthen vessel. More alkali potash is added to it and the entire decoction is kept in the vessel for three days. After the period is over, the skeins dyed previously in haju-dye are steeped in the decoction for 12 hour or so. After that the skeins are rinsed and dried. The process of soaking, rinsing and deying is repeated for obtaining the desired effect of dark blue or black. The months of June and July are preferred to conduct the dyeing practice, because during the period of the year the nili plants grow in plenty. The natural dye of nili is not eco-friendly to eri-silk. It has affinity for cotton fibre only.

The act of tainting threads with colour is called polewa in Tiwa language. The red tinging is called koja-polewa. Similarly, the haju-polewa denotes threads tainted with dark purple. The Tiwa artisans weave varieties of patterns in their fabrics with threads dyed in minimum number of natural dyes. Presently they are attracted by the charms of colour threads available in the markets. They are also tempted to create excellent design effect in the fabrics with the ready-made threads.

3. The Loom:

Traditional loom of the Hill Tiwas are of three types. The most popular one is a handloom in the strict sense of the term. It is operated without a reed. A wooden sword called pew is used to beat up the weft. On the other hand, it is a single healed tension loom of small dimension. This type of loom is called re-thad, a mati-sal (Plate-2). It is different from the loin-loom of the Karbis and some other tribes of Assam, Arunachal Pradesh, Nagaland.
of the North-East who use it. It has no back strap to tie it on the loin of the weaver when it is operated. It has no treadle to create shed in the warp thread for movement of the shuttle. It has several advantages. Firstly, it is portable and can be rolled and kept safely. Secondly, one can take it to any place as one likes and open the roll there and outstretch it for starting weaving instantly without any let. The hill Tiwas weave all cloths which are shorter in length and breath in this loom. The male garments tagla and thana, female garments phaskai and nara are woven in this loom.

The second variety is also a floor-loom with a reed for beating up the weft threads. It is like the former without the treadles and the pulleys. It is also operated by the weaver in her sitting posture on the ground. No separate frame is necessary to hold the loom for operation. This variety of loom is called kari-sal (Plate-3). The third type of loom is familiar as por-sal. (por means bor in Assamese, its English meaning is big). It is same as the primitive Assamese sal or loom. It is, of course, bigger than the kari-sal.

Recently throw-shuttle loom fitted with fly-shuttle sley is generously accepted in the hills. This is the fourth variety of loom and is called dathi-sal.

In the plains, the primitive throw-shuttle loom was the family heirloom once in almost all households. Now-a-days the throw-shuttle loom fitted with the fly-shuttle loom has earned considerable popularity among the weavers since recent past.

4. Loom accessories (Illustrations in Plates 8(i) to 8 (vii) :

The two varieties of floor looms described above have no superstructure or extra frame to hold them for operation. The accessories themselves are inseparably associated with the operation. The functions of the accessories are enumerated below:
1. **Thad**: The Assamese equivalent is *tolotha*. There are two pieces of *thad* with one functioning as warp beam and the other as cloth beam. They help keeping the warp threads in perfect tension. The woven part of the cloth is wound round the cloth beam. Two pieces of bamboo, smaller in size, help the warp beam in keeping tension. Each bamboo piece is called *thisli-pari* and remains close to the warp beam. In operational level, the Tiwa handloom keeps significant distance from any loin-loom of different tribes. For example, the Karbi loin-loom requires two cloth beams for its operation because of the warping technique. In the loom, the cloth beam to which the back strap or the weaving belt is attached is an instrument to keep the loom in perfect tension, while the other beam helps in smooth rolling of the woven part of the cloth.

2. **Re-khunta**: The four upright stakes around 2 feet in height are the *re-khuntas*. Two of the stakes hold the warp beam. The other two hold the cloth beam.

3. **Poho**: The Assamese equivalent is *ba*. In the operational level the *poho* guides the warp threads in the loom. *Poho* is the healed. Bamboo piece or anything like that serves the purpose of the stakes in warping the cloth.

4. **Poho-khunta**: There are two sets of *poho* (healds). They are suspended on a horizontal bar called *paho-tandal* which is held by two upright posts called *poho-khunta*. The *re-thad* has only one set of heald.

5. **Poho-bari**: Four small sticks used to hold two sets of *poho*.

6. **Khojong**: English equivalent is reed. Warp threads are dented through the reed. Reed is used to beat the weft threads in the process of weaving the surface texture.

 Pew replaces the reed in the other variety of floor loom. It is a beating sword usually made of the hard substance of fishtail palm called *sewa* in Assamese. It is a flat piece with one end slightly tapered. It serves
two purposes: (i) it beats the pick and (ii) it creates a shed in the warp to allow the shuttle to pass through.

7. **Thisli and thuri**: A stick with thread wound on it for weaving is called *thisli*. *Thuri* is a bamboo pipe which holds the *thisli* to pass the weft thread from one side to the other through the warp shed. One end of the *thuri* is closed so that the *thisli* does not come out of its hole. The *thuri* serves the purpose of a *maku* (shuttle) in traditional Assamese loom and the *thisli* the *mahura* as it is known.

8. **Phudul-bari**: Assamese equivalent is *putal*. In English, it is called temple. It is a flat bamboo stick of about 1 cm. breadth having sharp pointed ends. It is set to the woven cloth in the loom in such a manner that it maintains uniformity in the width.

9. **Sheban-pari or sheban-bari**: It looks like a *pew* but it is smaller in the width. It is used to create shed by pressing it over the warp threads.

10. **Khum kathi**: Split bamboo sticks thin and small in size. The sticks are used to keep the different picks of the design and are maintained in the warp threads at the opposite side of the woven cloth.

5. **Warping**:

The warp threads are collected into some balls. The number of balls are not more than five. Different baskets are assigned to keep the balls in position before warping. In the beginning, each single thread from the balls of thread are collected and fastened to a stake firmly fixed on the ground. Generally a small stick is used to outstretch the threads to a required distance equal to the length of the cloth or cloths. The outstretched threads make the warp. The number of balls make a unit of one time spread of the warp threads. The unit is repeated several times till the required count of warp thread is obtained for the width of the cloth. The existence of a
"karhoni" points to the fact that instead of using a stick the warp threads were drawn by this contrivance in the past. This accessory is made of wood. It has ten holes for holding one warp thread in each whole.

In the plains of Assam, the primitive throw-shuttle loom is loosing popularity and the throw shuttle loom fitted with fly-shuttle sley becomes popular among the weavers.

A traditional throw-shuttle loom consists of quite a good number of accessories. The accessories are varied and so are their names. Below is a list of some of the accessories and their names.

Two upright stakes are necessary for spreading the warp threads. A flat piece of bamboo stick called *bat-chiri* is placed nearby the wooden stake around which the warp threads pass while outstretched. *Ugha, chereki, letai, chiri* or *sali, hakuta, ba-chunga, yantar* are some other loom accessories without which weaving cannot be done.

A place is cleared somewhere in the courtyard or any other place to install the loom. Looming for operation is done on a frame made of four upright posts fixed firmly on the ground.

Two ladders connect the posts for holding the loom. The ladders are called *chali-maris*. The *chalimaris* hold the pole on which the loom suspended. The pole is called the *saku-mari* (Tiwa equivalent is *poho-tandal*). It is an important constituent which holds the healds, the reed and the entire loom.

A contrivance called *nachani* is necessary for the manipulation of the healds. The healds are fastened to the *nachanis* with ropes and also with the treadles. The *nachanis* dance (*nachani* denotes dancer) concurrently with the manipulation of treadles with foot.

The treadle is called *garaka* for it is manipulated with foot. There are two numbers of treadle. One end of each treadle is fastened to a *dang-mari*
(pole that lifts) while the other ends are fitted to a latch which rests on two treadle pegs called *garaka khuti* or *nigani-khuti* (*nigani* is the rat).

Sley called *dorpati* is a two piece wooden implement which holds the reed and facilitates it in beating up the picks. Each end of the sley is fastened with a small peg called *thila-mari*. Any adjustment, if necessary, is achieved by adjusting the ropes called *bagh-jori* attached to two small wheels called *ghila*.

The shuttle is called *maku*. It is made of wood. The space at its center is opened to create a rectangular passage for fixing the quill with thread wound on it. The quill is fixed in the open passage of the shuttle with a peg called *naki-sali* or *gereli-kathi*.

Each part of a loom, the cords used to fasten the parts, the pegs and others are not without a name. The list will be a big one if everything is explained here along with their functions. □