Contents

Preface
Acknowledgements
Abstract
List of Tables
List of Figures
List of Abbreviations and Symbols
List of Materials and Equipments

Chapter 1 – INTRODUCTION AND OBJECTIVE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. The Structure and Functions of Skin</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Drug Delivery in Dermatological Diseases</td>
<td>2</td>
</tr>
<tr>
<td>1.3. Use of Herb Since Antiquity To Date</td>
<td>4</td>
</tr>
<tr>
<td>1.4. Need for The study</td>
<td>5</td>
</tr>
<tr>
<td>1.5. Objective of the work</td>
<td>6</td>
</tr>
<tr>
<td>1.6. Gel as a Topical Delivery Systems</td>
<td>8</td>
</tr>
<tr>
<td>1.7. Ideal Physicochemical Parameter limits for Passive Transdermal</td>
<td>21</td>
</tr>
<tr>
<td>Delivery</td>
<td></td>
</tr>
<tr>
<td>1.8. Basic Components of Topical Drug Delivery Systems</td>
<td>21</td>
</tr>
<tr>
<td>1.9. Penetration Enhancers</td>
<td>22</td>
</tr>
</tbody>
</table>

Chapter 2 – LITERATURE REVIEW

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Skin Infection and Role of Topical Antimicrobial Agents an overview</td>
<td>27</td>
</tr>
<tr>
<td>2.2. Need for new antimicrobials</td>
<td>30</td>
</tr>
<tr>
<td>2.3. Herbals as a source of antimicrobials</td>
<td>31</td>
</tr>
<tr>
<td>2.4. Gels as topical drug delivery systems</td>
<td>31</td>
</tr>
<tr>
<td>2.5. Polymer of Interest</td>
<td>33</td>
</tr>
<tr>
<td>2.6. Selection of Permeation Enhancers</td>
<td>35</td>
</tr>
<tr>
<td>2.7. Plants of Interest</td>
<td>45</td>
</tr>
<tr>
<td>2.8. Drugs and Formulations of Interest</td>
<td>51</td>
</tr>
</tbody>
</table>

Chapter 3 – MATERIALS AND METHODS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
</table>

3.1. Selection, Collection & Authentication of Plant Samples
3.2. Standardization of Plant Samples
3.2.1. Botanical
 3.2.1.1. Determination of Foreign Matter
 3.2.1.2. Sensory Evaluation
 3.2.1.3. Microscopy
3.2.2. Physicochemical Evaluation
 3.2.2.1. Determination of Ash Values
 3.2.2.2. Determination of Extractable Matter
 3.2.2.3. Determination of Water Content
3.2.3. Microbial Contamination
3.2.4. Toxic Heavy Metal Analysis
3.3. Comparison of Antimicrobial Activity
3.3.1. Preparation of Plant Extract
3.3.2. Determination of Antimicrobial Action
 3.3.2.1. Microorganisms used
 3.3.2.2. Inoculum
 3.3.2.3. Agar Diffusion Assay
3.4. Column Fractional Separation & Purification of the Potent Antimicrobial Compound from Selected Extract
3.4.1. Purification and Characterization of the Isolated Compound
 3.4.1.1. TLC
 3.4.1.2. Melting point
 3.4.1.3. Infrared Spectroscopy (IR)
 3.4.1.4. Nuclear Magnetic Resonance Spectroscopy (1H-NMR)
 3.4.1.5. Ultra Violet Spectroscopy (UV)
 3.4.1.6. Determination of MIC and MBC of Chrysophanol
 3.4.1.7. Development and Validation of Spectrophotometric Method for Chrysophanol in Gel Formulations
 3.4.1.7.1. Preparation of Standard Stock Solution
 3.4.1.7.2. Determination of λ max.
 3.4.1.7.3. Procedure for Plotting Calibration Curve
 3.4.1.7.4. Estimation of Chrysophanol in Gel Formulation
 3.4.1.7.5. Validation of the Proposed Analytical Method
 3.4.1.7.5.1. Linearity
 3.4.1.7.5.2. Accuracy
3.4.1.7.5.3. Repeatability / Precision
3.4.1.7.5.4. Stability Profile
3.4.1.7.5.5. Limit of Detection (LOD) and Limit of Quantification (LOQ)
3.4.1.7.5.6. Range
3.5. Development and Evaluation of Chrysophanol Gel Formulation
3.5.1. Preparation of Gels
3.5.2. Evaluation of Chrysophanol Gel

3.5.2.1. Physico-Chemical Evaluation of Gels
3.5.2.1.1. pH
3.5.2.1.2. Determination of Viscosity
3.5.2.1.3. Spreadability
3.5.2.1.4. Extrudability
3.5.2.1.5. Test for Homogeneity
3.5.2.1.6. Analysis of Drug Content
3.5.2.1.7. Primary Skin Irritancy Test
3.5.2.1.8. Evaluation of Stability
3.5.2.2. In vitro Drug Release Studies
3.5.2.3. Ex vivo Permeation Studies
3.5.2.4. Data Analysis

3.6. Comparative Pharmacodynamic Evaluation
3.6.1. Animal Model
3.6.2. Wound Infection and Dressing
3.6.3. Wound Healing Rate
3.6.4. Bacteriological Examination of Granulated Tissue
3.6.5. Analysis of Data

Chapter 4 - RESULTS AND DISCUSSION

4.1. Selection, Collection & Authentication of Plant Samples
4.2. Standardization of Plant Samples
4.2.1. Botanical
4.2.2. Physicochemical Evaluation
4.2.3. Evaluation of Microbial Content
4.2.4. Toxic Heavy Metal Analysis
4.3. Comparison of Antimicrobial Activity
4.3.1. Preparation Of Plant Extract 104

4.3.2. Determination of Antimicrobial Action 105

4.4. Column Fractional Separation & Purification of the Potent Antimicrobial Compound from Selected Extract 109

4.4.1. Purification and Characterization of the Isolated Compound 110
 4.4.1.1. Infrared Spectroscopy (IR) 110
 4.4.1.2. Nuclear Magnetic Resonance Spectroscopy (NMR) 111
 4.4.1.3. Ultra Violet Spectroscopy (UV) 113
 4.4.1.4. Determination of MIC and MBC of Chrysophanol 114
 4.4.1.5. Development and Validation of Spectrophotometric Method for Chrysophanol in Gel Formulations 115
 4.4.1.5.1. Validation of the Proposed Analytical Method 115

4.5. Development and Evaluation of Chrysophanol Gel Formulations 119

4.6. Comparative Pharmacodynamic Evaluation 140

Chapter - 5 – CONCLUSION 144
 145

Chapter - 6 – BIBLIOGRAPHY 146
 166

APPENDIX