REFERENCES

Andresse, J. P. and T.T. Koopmans. 1984. A monitoring study on nutrient cycles in soils used for shifting cultivation under various climatic conditions in tropical Asia. I. the influence of simulated burning on form and availability of plant nutrients; Agriculture, Ecosystems and Environment., pp 1-16.

Anitha, K., Shijo E.Joseph., V.Ramasamy and S.Narendra Prasad. 2009. Understory plant diversity and community composition in two sites at different disturbance levels were studied on the Anaikatty hills, Western Ghats, Environment Monitoring Assessment., 1 (55): 393–405.

Baithalu, S., M. Anbarashan and N. Parthasarathy. 2013. Two-decadal changes in forest structure and tree diversity in a tropical dry evergreen forest on the Coromandel Coast of India. *Tropical Ecology,* 54: 397-403

Biological Diversity Act, 2002, National Biodiversity Authority, India, pp 1-29.

Boyle, B. L. 1996. Changes on altitudinal and latitudinal gradients in Neotropical Montane forests. Ph.D. dissertation, Washington University, St. Louis, Missouri, USA.

IUCN, 1994. United Nations List of National Parks and Protected Areas. Prepared by the World Conservation Monitoring Centre (WCMC) and IUCN Commission on National Parks and Protected Areas, Gland, Switzerland and Cambridge, UK

Jose, H.T. 2003, Phytosociology and edaphic attributes of mangrove forests in Kannur district, Kerala B.Sc. Project report. pp 1640.

Rathod Mulchand. 2013 Floristic Diversity of the Patnadevi Forest, Maharashtra, India *Journal of Environmental Research and Development*. 7(4) :1430-1438.

Suresh Kumar. S. 1993 Floristic composition, above ground biomass productivity and edaphic properties of the mangrove forests of Puduvyppu., pp 55- 74.

The plant names and family name ; http://www.theplantlist.org/

