CONTENTS

CHAPTER 1

1. GENERAL INTRODUCTION -I
1.1 Fundamentals of Corrosion and Corrosion control
1.1.1 Introduction
1.1.2 Thermodynamics of Corrosion
1.1.3 Laboratory Corrosion Measurements Methods
 1.1.3.1 Weight loss method
 1.1.3.2 Metal ion analysis of solution
 1.1.3.3 Gasometric technique
 1.1.3.4 Electrical resistance (ER) probe technique
 1.1.3.5 Potentiodynamic polarization measurement
 1.1.3.6 Linear polarization resistance
 1.1.3.7 Electrochemical impedance spectroscopy
 1.1.3.8 Electrochemical noise
1.1.4 Corrosion Prevention and Control Methods
 1.1.4.1 Selection of appropriate material
 1.1.4.2 Modification of metal surface (use of protective coatings)
 1.1.4.3 Cathodic protection
 1.1.4.4 Anodic protection
 1.1.4.5 Use of inhibitors
 1.1.4.6 Environment friendly or green corrosion inhibitors

GENERAL INTRODUCTION – II

1.2 Surfactants and their role in Corrosion Inhibition
1.2.1 Introduction
1.2.2 Classification of Surfactants
 1.2.2.1 Anionic surfactants
 1.2.2.2 Cationic surfactants
 1.2.2.3 Amphoteric (zwitterionic) surfactants
 1.2.2.4 Nonionic surfactants
 1.2.2.5 Gemini surfactants
1.2.3 Properties of Gemini Surfactants
 1.2.3.1 Critical micellar concentration (CMC)
 1.2.3.2 Micellar shape
 1.2.3.3 Surface activity
 1.2.3.4 Aggregation number
 1.2.3.5 Solubilization
 1.2.3.6 Gemini films
1.2.3.7 Wetting and foaming properties
1.2.3.8 Antimicrobial properties

1.2.4 Surfactants as Corrosion Inhibitors
1.2.4.1 Cationic surfactants as corrosion inhibitors
1.2.4.2 Anionic surfactants as corrosion inhibitors
1.2.4.3 Non ionic surfactants as corrosion inhibitors
1.2.4.4 Gemini surfactant as corrosion inhibitors

1.3 STATEMENT OF THE WORK PRESENTED IN THE THESIS

CHAPTER 2

2. MATERIALS AND METHODS
2.1 Chemicals Used
2.2 Test Specimens
 2.2.1 Weight loss experiments
 2.2.2 Electrochemical experiments
2.3 Test Solution
2.4 Synthesis of Surfactants
 2.4.1 Synthesis of cationic gemini surfactants of tetradecyl and hexadecyl series with methyl spacers
 2.4.2 Synthesis of schiff base -based cationic gemini surfactants
 2.4.3 Synthesis of iminium surfactant
2.5 Characterization of Synthesized Compounds
2.6 Corrosion Inhibition Studies
 2.6.1 Weight loss measurements
 2.6.2 Chemical analysis of solution
 2.6.3 Potentiodynamic polarization measurements
 2.6.4 Electrochemical impedance technique
2.7 Surface Morphological Studies
 2.7.1 Scanning electron microscopy (SEM) and Energy dispersive x-ray (EDAX) analysis
 2.7.2 Atomic force microscopy (AFM)
2.8 Determination of Thermodynamic Parameters
 2.8.1 Activation energy
 2.8.2 Free energy of adsorption
 2.8.3 Heat of adsorption
 2.8.4 Enthalpy of adsorption and entropy of adsorption
2.9 Determination of Synergism Parameter
2.10 Determination of Critical Micelle Concentration
2.11 Theoretical Calculations
CHAPTER 3

ALKANEDIYL-α,ω-BIS(DIMETHYL HEXADECYL AMMONIUM BROMIDE) GEMINI SURFACTANTS AS CORROSION INHIBITORS FOR MILD STEEL IN 20% FORMIC ACID

3. RESULTS AND DISCUSSION
3.1 Characterization of Synthesized Gemini surfactants
3.2 Determination of Critical Micelle Concentration of Gemini Surfactants in 20% Formic Acid
3.3 Weight Loss Measurements
3.4 Solution Analysis of Metal Ion
3.5 Adsorption Isotherm
3.6 Effect of Temperature
3.7 Potentiodynamic Polarization Measurements
3.8 Surface Morphological Studies
 3.8.1 Scanning electron microscopy (SEM)
3.9 Conclusions

CHAPTER 4

ALKANEDIYL-α,ω-BIS(DIMETHYL TETRADECYL AMMONIUM BROMIDE) GEMINI SURFACTANTS AS CORROSION INHIBITORS FOR MILD STEEL IN 1 M HCl

4. RESULTS AND DISCUSSION
4.1 Characterization of Synthesized Gemini surfactants
4.2 Determination of Critical Micelle Concentration of Gemini Surfactants in 1 M HCl
4.3 Weight Loss Measurements
4.4 Solution Analysis of Metal Ion
4.5 Adsorption Isotherms
4.6 Effect of Temperature
4.7 Potentiodynamic Polarization Measurements
4.8 Electrochemical Impedance Spectroscopy Measurements
4.9 Surface Morphological Studies
 4.9.1 Scanning electron microscopy (SEM)
 4.9.2 Atomic force microscopy (AFM) studies
4.10 Conclusions
CHAPTER 5

SCHIFF BASE-BASED CATIONIC GEMINI SURFACTANT BIS[p-N,N,N-
TETRADECYL DIMETHYL AMMONIUM BROMIDE) BENZYLIDENE] THIOUREA AS CORROSION INHIBITOR FOR MILD STEEL IN 20%
FORMIC ACID

5. RESULTS AND DISCUSSION
5.1 Characterization of Synthesized Schiff Base-Based Gemini Surfactant
5.2 Determination of Critical Micelle Concentration of Schiff Base-Based Gemini Surfactant in 20% Formic Acid
5.3 Weight Loss Measurements
5.4 Solution Analysis of Metal Ion
5.5 Adsorption Isotherms
5.6 Effect of Temperature
5.7 Potentiodynamic Polarization Measurements
5.8 Surface Morphological Studies
 5.8.1 Scanning electron microscopy (SEM) and Energy dispersive x-ray (EDAX) studies
 5.8.2 Atomic force microscopy (AFM) studies
5.9 Conclusions

CHAPTER 6

SCHIFF BASE-BASED CATIONIC GEMINI SURFACTANT BIS[p-N,N,N-
DODECYL DIMETHYL AMMONIUM BROMIDE) BENZYLIDENE] THIOUREA AS CORROSION INHIBITOR FOR MILD STEEL IN 20%
FORMIC ACID

6. RESULTS AND DISCUSSION
6.1 Characterization of Synthesized Schiff Base-Based Gemini Surfactant
6.2 Determination of Critical Micelle Concentration of Schiff Base-Based Gemini Surfactant in 20% Formic Acid
6.3 Weight Loss Measurements
6.4 Solution Analysis of Metal Ion
6.5 Adsorption Isotherms
6.6 Effect of Temperature
6.7 Potentiodynamic Polarization Measurements
6.8 Electrochemical Impedance Spectroscopy Measurements
6.9 Theoretical Calculations
6.10 Surface Morphological Studies
 6.10.1 Scanning electron microscopy (SEM) and Energy dispersive x-ray (EDAX) Studies
6.11 Conclusions
CHAPTER 7

IMINIM SURFACTANT (p-BENZILIDENE BENZYL DODECYL IMINUM CHLORIDE) AS CORROSION INHIBITOR FOR MILD STEEL IN 1 M HCl

7. RESULTS AND DISCUSSION
7.1 Characterization of Synthesized Schiff Base-Based Gemini Surfactant
7.2 Determination of Critical Micelle Concentration of Iminium Surfactant in 20% Formic Acid
7.3 Weight Loss Measurements
7.4 Solution Analysis of Metal Ion
7.5 Adsorption Isotherms
7.6 Effect of Temperature
7.7 Potentiodynamic Polarization Measurements
7.8 Electrochemical Impedance Spectroscopy Measurements
7.9 Surface Morphological Studies
7.9.1 Scanning electron microscopy (SEM) and Energy dispersive x-ray (EDAX) Studies
7.10 Conclusions

CHAPTER 8

NON IONIC SURFACTANT TRITON X-100 AS CORROSION INHIBITOR FOR ALUMINIUM IN 1 M HCl AND SYNERGISTIC INFLUENCE OF BUTANE DIYL-1,4-BIS (DIMETHYL TETRADECYL AMMONIUM BROMIDE)

8. RESULTS AND DISCUSSION
8.1 Weight Loss Measurements
8.2 Determination of Synergism Parameter
8.3 Adsorption Isotherms
8.4 Effect of Temperature
8.5 Potentiodynamic Polarization Measurements
8.6 Electrochemical Impedance Spectroscopy Measurements
8.7 Surface Morphological Studies
8.7.1 Scanning electron microscopy (SEM) and Energy dispersive x-ray (EDAX) Studies
8.8 Conclusions

REFERENCES

LIST OF PUBLICATIONS

APPENDICES