CHAPTER 7

b-Colouring of Middle Graph and Middle Graph of Central Graph

In this Chapter, the structural properties of Cycle, Path, Star graph, Fan graph, Sunlet graph, Double Star graph, Bistar, Complete Bipartite graph, are obtained along with its b-Chromatic number which are denoted as $M(C_n)$, $M(P_n)$, $M(K_{1,n})$, $M(F_{1,n})$, $M(S_n)$, $M(K_{1,n,n})$, $M(B_{n,n})$ and $M(K_{m,n})$ respectively. Also the b-Chromatic number of Middle graph of Central graph of Complete graph and Star graph are obtained along with its structural properties.

7.1 Introduction [78, 83]

The Middle graph of G, denoted by $M(G)$ is defined as the vertex set of $M(G)$ is $V(G) \cup E(G)$. Two vertices x, y in the vertex set of $M(G)$ are adjacent in $M(G)$ in case one of the following holds.

- x, y are in $E(G)$ and x, y are adjacent in G.
- x is in $V(G)$, y is in $E(G)$, x, y are adjacent in G.

Example

![Figure 1(a): C_4](image1)

![Figure 1(b): Middle graph of C_4](image2)
7.2 b-Chromatic Number of Middle Graph of Cycle

7.2.1 Theorem

For any \(n \geq 5 \), \(\varphi[M(C_n)] = 5 \)

Proof

Let \(C_n \) be a Cycle with \(n \) vertices \(v_1, v_2, v_3, \ldots, v_n \). Let \(e_i = v_iv_{i+1} \) for \(1 \leq i \leq n-1 \) and \(e_n = v_nv_1 \) be the edges of the Cycle \(C_n \). If \(M(C_n) \) be the Middle graph of Cycle \(C_n \) then \(v_1', v_2', v_3', \ldots, v_n' \) be the newly added vertices corresponding to the edges \(e_1, e_2, e_3, \ldots e_{n-1} \) in order to obtain \(M(C_n) \). The vertex set of Middle graph of cycle is defined as follows:

\[
V[M(C_n)] = \{v_i/1 \leq i \leq n\} \cup \{v_i'/1 \leq i \leq n\}
\]

Here the vertices \(v_1', v_2', v_3', \ldots, v_n' \) forms a four regular graph. Hence by colouring procedure we assign five colours to every \(M(C_n) \) to produce a b-chromatic colouring. Suppose if we assign more than five colours, it contradicts the definition of b-chromatic because the vertices in \(M(C_n) \) is incident with atmost four vertices. Note that rearrangement of colours also does not accommodate the new colour class. Thus by the colouring procedure the above said colouring is maximal and b-chromatic.

Example

![Diagram](image)

*Figure 2: \(\varphi[M(C_6)] = 5 \)
7.2.2 Corollary

For any $n<5$, $\varphi[M(C_n)] = n$

7.2.3 Corollary

The number of cycles in $M(C_n)$ has n times 3 cycle and two times n cycles.

Proof

In $M(C_n)$, every vertex v_i is adjacent with v_{i+1} and v_{i-1} for every $i=2,3,..., n-1$, v_1 is adjacent with v_n and v_1. Thus we see that every vertex v_i ($i=1,2,3..n$) along with the edges incident with v_i forms a 3 cycle and vertex v_i for $i=1,2,3..n$ forms an n cycle and v_i for $i=1,2,3..n$ forms another n cycle. Thus, there are n times 3 cycles and two times n cycles.

7.2.4 Structural Properties of Middle Graph of Cycle

The number of vertices in $M(C_n)$, for $n \geq 2$, i.e. $p[M(C_n)] = 2n$, the number of edges in $M(C_n)$ i.e. $q[M(C_n)] = 3n$ and the maximum and minimum degree of $M(C_n)$ are denoted as $\Delta = 4$ and $\delta = 2$ respectively. The number of vertices having maximum and minimum degree in $M(C_n)$ is denoted by $n(p_\Delta) = n$ and $n(p_\delta) = n$ respectively.

7.2.5 Remark

The number of vertices in $M(C_n)$ is two times the number of vertices in Cycle C_n.

7.2.6 Remark

The number of edges in $M(C_n)$ is three times the number of edges in Cycle C_n.

7.3 b-Chromatic Number of Middle graph of Path and its Structural Properties

7.3.1 Theorem

$$\varphi[M(P_n)] = \begin{cases}
3 & \text{if } n = 3,4 \\
4 & \text{if } n = 5,6,7 \\
5 & \text{if } n \geq 8
\end{cases}$$
Proof

Let $v_1, v_2, v_3... v_n$ and $e_1, e_2, e_3... e_{n-1}$ are respectively be the vertices and edges of the path graph P_n. If $M(P_n)$ be the Middle graph of Path P_n then $v_1, v_2, v_3... v_n$ be the vertices of path and $v_1', v_2', v_3',v_{n-1}'$ be the newly added vertices corresponding to the edges $e_1, e_2, e_3... e_{n-1}$ in order to obtain $M(P_n)$. The vertex set of $M(P_n)$ is defined as follows:

$$i.e. \ V[M(P_n)] = \{v_i/ 1 \leq i \leq n\} \cup \{v_i'/ 1 \leq i \leq n-1\}$$

The result is easy to verify for $n=2,3,4... 7$. Now we consider for $n \geq 8$. Here the vertices v_2', v_3',v_{n-1}' are incident with at most four edges. So there is a possibility of assigning five colours to every $M(P_n)$ to produce a b-chromatic colouring. Suppose if we assign more than five colours, it contradicts the definition of b-colouring. Thus by the colouring procedure the above said colouring is maximum and b-chromatic.

Example

![Figure 3: $\phi[M(P_8)] = 5$](image)

7.3.2 Corollary

Every $M(P_n)$ has $(n-2)$ edge disjoint cycles.

Proof

In $M(P_n)$, the vertices v_i' is adjacent with the vertices v_i, v_{i+1} and v_i, v_{i+1}' and v_i+2' for $i=2,3,4...n-2$ and the vertices v_i is adjacent with v_i, v_{i+1}, v_i and v_{n-1} is adjacent with v_{n-1}, v_n and v_{n-2}. Therefore for every $i=1,2,3...n-2$ the vertices v_i' and v_i+1 forms a cycle. Thus there are $(n-2)$ edge disjoint cycles in every $M(P_n)$.

104
7.3.3 Structural Properties of Middle Graph of Path

The number of vertices in $M(P_n), (n>4)$ i.e. $p[M(P_n)]= 2n-1$, The number of edges in $M(P_n)$ i.e. $q[M(P_n)]=3n-4$ and the maximum and minimum degree of $M(P_n)$ are denoted as $\Delta = 4$ and $\delta =1$ respectively. The number of vertices having maximum and minimum degree in $M(P_n)$ is denoted by $n(p_{\Delta})=n-3$ and $n(p_{\delta})= 2$ respectively.

7.3.4 Theorem

For every $n>2$, the number of edges in Middle graph of Path graph is $3n-4$.

Proof

$q[M(P_n)] = (n-2) \times n + (n-2)$

$= (n-2)q(K_3) + \text{Remaining edges not in } K_3$

$= (n-2)\times 3 + \text{Remaining edges not in } K_3$

$= 3n-6+2$

$= 3n-4$

Therefore $q[M(P_n)] = 3n-4$

7.4 b-Chromatic Number of Middle Graph of Star Graph

7.4.1 Theorem

For $n \geq 3$, $\varphi[M(K_{1,n})] = n + 1$

Proof

Consider the Star graph $K_{1,n}$ with $V(K_{1,n}) = v_1, v_2, v_3, ..., v_n, v$, where v is the root vertex. By the definition of Middle graph, each edge vv_i for $1 \leq i \leq n$ of $K_{1,n}$ is subdivided by a vertex v_i' for $1 \leq i \leq n$ in $M(K_{1,n})$.

Now assign a proper colouring to these vertices as follows. Consider the colour class $C = \{c_1, c_2, c_3, ..., c_n, c_{n+1}\}$. Assign the colour c_i to the vertex v_i' for $i = 1, 2, ..., n$ and assign the colour c_{n+1} to the root vertex v, since the vertex v_i' along with the vertex v forms a Complete
graph. Therefore any colouring of \(<v_i,v_i'>\) will be a b-chromatic colouring. Now we cannot colour any \(v_i\) with a new colour, since all the vertices \(v_i's\) are pendant vertices. Thus by the colouring procedure it is the maximum and b-colouring.

Therefore \(\varphi[M(k_{1,n})] = n + 1, n \geq 3\).

Example

![Image](image.png)

Figure 4: \(\varphi[M(k_{1,4})] = 5\)

7.4.2. Structural Properties of Middle Graph of Star Graph

The number of vertices in \(M(K_{1,n}), (n>2)\) i.e. \(p[M(K_{1,n})] = 2n + 1\). The number of edges in \(M(K_{1,n})\) i.e. \(q[M(K_{1,n})] = \frac{n(n+3)}{2}\) and the maximum and minimum degree of \(M(K_{1,n})\) are denoted as \(\Delta = n+1\) and \(\delta = 1\) respectively. Here \(n\) vertices of degree \(n+1\), \(n\) vertices of degree \(1\) and one vertex of degree \(n\).

7.5 b-Chromatic Number of Middle Graph of Fan Graph

7.5.1 Theorem

\[\varphi[M(F_{m,n})] = n+1 \text{ for } m=1 \text{ and } n \geq 2\]

Proof

Let \((X,Y)\) be the bipartition of \(F_{m,n}\) with \(|X|=m\) and \(|Y|=n\). Let \(v\) be the vertex of \(X\) and \(y=\{v_1,v_2,v_3..v_n\}\). By the definition of Middle graph each vertex \(vv_i\) for \(1 \leq i \leq n\) is subdivided by the newly introduced vertex \(v_i'\) for \(1 \leq i \leq n\) in \(M(F_{m,n})\). Also \(u_i' (1 \leq i \leq n-1)\) is the another newly introduced vertex between \(v_iv_{i+1}\) for \(i=1,2,3..n-1\) in \(M(F_{m,n})\).
\[V[M(F_{m,n})] = \{v\} \cup \{v_i : 1 \leq i \leq n\} \cup \{v'_i : 1 \leq i \leq n\} \cup \{u_i' : 1 \leq i \leq n-1\} \]

Here in \(M(F_{m,n}) \), the vertices \(v'_1, v'_2, v'_3, ..., v'_n, v \) induces a clique of order \(n+1 \). Therefore we say that the b-chromatic number of \(M(F_{m,n}) \geq n+1 \).

Consider the colour class \(C = \{c_1, c_2, c_3, ..., c_n, c_{n+1}\} \). Now assign a proper colouring to the vertices as follows. Assign the colour \(c_{i+1} \) to \(v'_i \) for \(i = 1, 2, 3, ..., n \) and \(c_1 \) to the root vertex \(v \). Here the vertices \(v, v_i \) for \(i = 1, 2, 3, ..., n \) realizes its own colour, which produces b-chromatic colouring. Next assign the colour \(c_{n+2} \) to the vertices \(v_i \) for \(i = 1, 2, 3, ..., n \) or to the vertices \(u_i' \) for \(i = 1, 2, 3, ..., n-1 \), here the vertices \(v_1, v_2, v_3, ..., v_n \) and \(u_i' (1 \leq i \leq n-1) \) does not realizes the new colour.

Hence there is a possibility of assigning only the existing colours to the vertices \(v'_1, v'_2, v'_3, ..., v'_n \) and \(u_i' (1 \leq i \leq n) \). So, we say that the b-chromatic number of \(M(F_{m,n}) \leq n+1 \). Therefore \(\varphi[M(F_{m,n})] = n+1 \). Note that rearrangement of colours also does not accommodate the new colour class. Thus by the colouring procedure the above said colouring is maximum and b-chromatic.

Example

\[\text{Figure 5(a)}: F_{(1,3)} \quad \text{Figure 5(b)}: M[F_{(1,3)}] = 4 \]

7.5.2 Structural Properties of Middle graph of Fan graph

The number of vertices in \(M(F_{l,n}) \), for \(n \geq 2 \), i.e. \(p[M(F_{l,n})] = 3n \). The maximum and minimum degree of \(M(F_{l,n}) \) are denoted as \(\Delta = n+3 \) and \(\delta = 2 \) respectively. The number of edges in \(M(F_{l,n}) \) i.e. \(q[M(F_{l,n})] = \frac{n^2+13n-12}{2} \).
7.5.3 Theorem

For every $n \geq 2$, $q[M(F_{1,n})] = \left\lfloor \frac{n^2 + 13n - 12}{2} \right\rfloor$

Proof

$q[M(F_{1,n})] = \text{Number of edges in } K_{n+1} + (n-2) \text{ Number of edges in } K_4 + \text{ Remaining edges}

= \left\lfloor \frac{n(n+1)}{2} \right\rfloor + (n-2) q(K_4) + 2q(K_3)

= \left\lfloor \frac{n(n+1)}{2} \right\rfloor + (n-2) 6 + 2(3)

= \left\lfloor \frac{n^2 + n + 12n - 24 + 12}{2} \right\rfloor

= \left\lfloor \frac{n^2 + 13n - 12}{2} \right\rfloor$

Therefore $q[M(F_{1,n})] = \left\lfloor \frac{n^2 + 13n - 12}{2} \right\rfloor$

7.6 b-Chromatic Number of Middle Graph of Sunlet Graph

7.6.1 Theorem

The b-chromatic number of Middle graph of Sunlet graph is 5.

Proof

The Sunlet graph is the graph on $2n$ vertices obtained by attaching n pendant edges to a Cycle C_n. Consider the Middle graph of Sunlet graph. Here, the Middle graph of every Sunlet graph has n-edge disjoint subgraph which induces K_4. Also we see that every n-edge disjoint K_4 is attached to the pendant vertex. Thus, by proper colouring we can assign a maximum of five colours for producing a b-chromatic colouring. Suppose if we assign more than five colours it contradicts the definition of b-colouring. Thus, by the colouring procedure the b-chromatic number of Middle graph of Sunlet graph is five.
Example

Figure 6: $\varphi[M(S_5)] = 5$

7.6.2 Structural Properties of Middle Graph of Sunlet Graph

In the Middle graph of Sunlet graph ($n \geq 3$) the number of vertices in $M(S_n)$ i.e. $p[M(S_n)] = 4n$, number of edges in $M(S_n)$ i.e. $q[M(S_n)] = 7n$, the maximum and minimum degree of $M(S_n)$ is denoted by $\Delta = 6$ and $\delta = 1$ respectively. Here there are n-copies of edge disjoint complete graph of order 4. The number of vertices having maximum and minimum degree in $M(S_n)$ is denoted by $n(p_\Delta) = n$ and $n(p_\delta) = n$ and remaining n vertices are with degree $n+1$.

7.7 b-Chromatic Number of Middle Graph of Double Star Graph

7.7.1 Theorem

For any integer $n > 2$, the b-Chromatic number of Middle graph of any Double Star graph is $n+1$ i.e. $\varphi[M(K_{I,n,n})] = n+1$

Proof

Consider the Double star graph $K_{I,n,n}$ with $V(K_{I,n,n}) = \{v_l / 1 \leq l \leq n\} \cup \{v'_l / 1 \leq l \leq n\} \cup \{v\}$. In $M(K_{I,n,n})$, by the definition of Middle graph each edge vv_l is subdivided by the new vertex u_l and each edge $v_l v'_l$ is subdivided by the another new vertex u'_l. Here we see that the vertices u'_ls are mutually adjacent to each other and the vertices u'_l are adjacent with u_l, v_l and v_l' for $i=1,2,3..n$. The vertex set of $M(K_{I,n,n})$ is defined as follows:

i.e. $V[M(K_{I,n,n})]=\{v_l / 1 \leq l \leq n\} \cup \{u_l / 1 \leq l \leq n\} \cup \{v\} \cup \{v'_l / 1 \leq l \leq n\} \cup \{u'_l / 1 \leq l \leq n\}$.

109
Here the vertices $u_1, u_2, u_3 \ldots u_n$ along with root vertex v induces a clique of order $n+1$ in $M(K_{1,n,n})$. Therefore we say that the b-chromatic number of $M(K_{1,n,n}) \geq n+1$. Now we will prove the inequality $\varphi[M(K_{1,n,n})] \leq n+1$, for that assign a proper colouring to these vertices as follows. Consider the colour class $C = \{c_1, c_2, c_3 \ldots c_n, c_{n+1}\}$. By proper colouring we assign the colour c_i to the vertex u_i for $i=1,2,3 \ldots n$ and c_{n+1} to the vertex v (induces a clique of order $n+1$), which produces a b-chromatic colouring. Suppose if we assign any new colour to the remaining vertices, it will not produce a b-chromatic colouring due to the above mentioned non-adjacency condition. So we should assign only the presused colours such as c_{n+1} to the vertices v_i and v_i' for $i=1,2,3 \ldots n$ and c_{i+1} to u_i' for $i=1,2,3 \ldots n-1$ and c_1 to u_n'. Now, we say that the b-chromatic number of $M(K_{1,n,n}) \leq n+1$. Therefore $\varphi[M(K_{1,n,n})] = n+1$. Thus by the colouring procedure the above said colouring is maximum and b-chromatic.

Example

![Figure 7: $\varphi[M(K_{1,4,4})] = 5$](image)

7.7.2 Structural Properties of Middle Graph of Double Star Graph

In the Middle graph of Double star graph, number of vertices in $M(K_{1,n,n})$ i.e. $p[M(K_{1,n,n})] = 4n+1$, number of edges in $M(K_{1,n,n})$ i.e. $q[M(K_{1,n,n})] = \left\lfloor \frac{n^2+9n}{2} \right\rfloor$, the maximum and minimum degree of Middle graph of Double star graph is denoted by $\Delta = n+2$ and $\delta = 1$ respectively. The number of vertices having Δ in $M(K_{1,n,n})$ is denoted by $n(p_{\Delta}) = n$, similarly $n(p_\delta) = n$.

110
7.7.3 Theorem

For every $n \geq 2$, $q[M(K_{1,n,n})] = \left[\frac{n^2 + 9n}{2} \right]$

Proof

$q[M(K_{1,n,n})] = \text{Number of edges in } K_{n+1} + \text{Number of edges in } K_3 + \text{Remaining edges}$

$= q(K_{n+1}) + n(\text{Number of edges in } K_3) + n$

$= \left[\frac{n(n+1)}{2} \right] + 3n + n$

$= \left[\frac{n^2 + n + 8n}{2} \right]$

$= \left[\frac{n^2 + 9n}{2} \right]$

Therefore $q[M(K_{1,n,n})] = \left[\frac{n^2 + 9n}{2} \right]$

7.8 b-Chromatic number of Middle Graph of Bistar Graph

7.8.1 Theorem

The b-Chromatic number of Middle graph of Bistar has $n+2$ colours for every $n \geq 2$
i.e. $\varphi [M(B_{n,n})] = n+2.$

Proof

Consider the Bistar $B_{n,n}$. Let $V(B_{n,n}) = \{ u, v, u_i, v_j : 1 \leq i \leq n, 1 \leq j \leq n \}$ and $E(B_{n,n}) = \{ uu_i, vv_j : 1 \leq i \leq n, 1 \leq j \leq n \}$. By the definition of Middle graph, introduce a new vertex u_i' in the edge connecting uu_i and let v_j' be the new vertex in edge connecting vv_j and s be the vertex in between u and v in $M(B_{n,n})$. The vertex set of $M(B_{n,n})$ is defined as follows:

i.e. $V[M(B_{n,n})] = \{ u, v, u_i, v_j, u_i', v_j', s / 1 \leq i \leq n, 1 \leq j \leq n \}$

Here v_j' for $i=1,2,3..n$ along with the vertex s forms a clique of order $n+2$, also u_i' for $i=1,2,3..n$ with s forms another clique of $n+2$. Thus we see there are two edge disjoint subgraph of order K_{n+2}. Therefore we say $\varphi [M(B_{n,n})] \geq n+2.$
Consider the colour class $C = \{c_1, c_2, c_3 \ldots c_n, c_{n+1}, c_{n+2}\}$. Hence by proper colouring we assign $n+2$ colours to every $M(B_{n,n})$. Suppose if we assign more than $n+2$ colours it contradicts the definition of b-chromatic colouring. Note that rearrangement of colours also does not accommodate the new colour class. Thus by the colouring procedure the above said colouring is maximal and b-chromatic.

Example

![Middle graph of Bistar](image)

Figure 8: $\varphi[M(B_{3,3})] = 5$

7.8.2 Corollary

The Middle graph of any Bistar ($n \geq 2$) is a Separable graph.

Proof

From the above theorem and example, clearly we say that the vertex connectivity of Middle graph of BiStar is one. By definition, a graph is said to be separable if its vertex connectivity is one. Therefore the Middle graph of any BiStar is a Separable graph.

7.8.3.1 Structural Properties of Middle Graph of Bistar

In the Middle graph of Bistar graph, number of vertices in $M(B_{n,n})$ for every $n \geq 2$, i.e. $p[M(B_{n,n})] = 4n + 3$, number of edges in $M(B_{n,n})$ for every $n \geq 2$, i.e. $q[M(B_{n,n})] = n^2 + 5n + 2$, the maximum and minimum degree of Middle graph of Bistar graph is denoted by $\Delta = 2(n+1)$ and $\delta = 1$. The number of vertices having Δ in $M(B_{n,n})$ is denoted by $n(p_\Delta) = 1$, similarly $n(p_\delta) = 2n$ respectively.
7.8.4 Theorem

For every \(n \geq 2 \), \(q[M(B_{n,n})] = n^2 + 5n + 2 \)

Proof

\[
q[M(B_{n,n})] = 2 \left(\text{Number of edges in } K_{n+2} \right) + \text{Remaining edges not in } K_{n+2}
\]

\[
= 2q[K_{n+2}] + \text{Remaining edges not in } K_{n+2}
\]

\[
= 2 \left(\frac{(n+2)(n+1)}{2} \right) + 2n
\]

\[
= (n+2)(n+1) + 2n
\]

\[
= n^2 + n + 2n + 2 + 2n
\]

\[
= n^2 + 5n + 2
\]

Therefore \(q[M(B_{n,n})] = n^2 + 5n + 2 \)

7.9 b-Chromatic Number of Middle Graph of Complete Bipartite Graph

7.9.1 Theorem

Let \(K_{m,n} \) be a Complete bipartite graph on \(m \) and \(n \) vertices, then \(\varphi[M(K_{m,n})] = n + 1 \)

for every \(m \leq n \).

Proof

Consider the Complete bipartite graph \(K_{m,n} \) with bipartition \((X,Y)\) where \(X = \{ u_1, u_2, u_3, \ldots, u_m \} \) and \(Y = \{ v_1, v_2, v_3, \ldots, v_n \} \). By the definition of Middle graph, let \(u_{ij} \) be the newly introduced vertex in the edge connecting \(u_i \) and \(v_j \)

i.e. \(M(K_{m,n}) = \{ u_i \mid 1 \leq i \leq m \} \cup \{ v_j \mid 1 \leq j \leq n \} \cup \{ u_{ij} \mid 1 \leq i \leq m, 1 \leq j \leq n \} \).

Here every vertex set \(\{ u_i \mid 1 \leq i \leq m \} \) are not adjacent with vertex set \(\{ v_j \mid 1 \leq i \leq n \} \). Clearly \(u_1, u_2, u_3, \ldots, u_m \) and \(v_1, v_2, v_3, \ldots, v_n \) are independent sets with \(|u_i| = m \) and \(|v_i| = n \). Here \(u_i \) along with \(u_{ij} 's \) for \(i = 1, 2, 3 \ldots, m \) and \(j = 1, 2, 3 \ldots, n \) forms a complete graph of clique of order \(m \) in \(M(K_{m,n}) \). Also we see that there are \(m \) copies of edge disjoint \(K_{m+1} \) in \(M(K_{m,n}) \).
Consider the colour class $C=\{c_1, c_2, c_3 \ldots c_m, c_{m+1}\}$. Now assign a proper colouring to $M(K_{m,n})$ as follows. Assign the colour c_i to the vertex u_i for $i=1,2,3 \ldots m$ and assign the colour c_{j+1} to u_{1j}, c_{j+2} to u_{2j} and so on for $j=1,2,3 \ldots n$. Here the vertex u_i for $i=1,2,3 \ldots m$ do not realize the colour c_{i+j}, which does not produce a b-chromatic colouring.

To make the colouring as b-chromatic, we assign the colour c_1 to u_i for $i=1,2,3 \ldots m$ and assign the colour c_{i+j} to u_{ij}’s when $i+j \leq n+1$ and for remaining u_{ij}’s assign c_{i+j-n} when $i+j \geq n+1$ for $i=2,3,4 \ldots m$ and $j=1,2,3 \ldots n$, which produces a b-chromatic colouring. Suppose if we assign any new colour to v_j for $j=1,2,3 \ldots n$ it does not produce a b-chromatic colouring because each u_i for $1 \leq i \leq m$ is not adjacent with v_j for $1 \leq j \leq n$. So we have to assign only the preused colours to v_j i.e. assign the colour c_1 to v_j for $j=1,2,3 \ldots n$. Thus by the colouring procedure, we assign a maximum of $n+1$ colours to every $M(K_{m,n})$ to produce a b-chromatic colouring.

Therefore $\phi[M(K_{m,n})] = n+1$ for $m \leq n$.

Example

![Diagram](image)

Figure 9: $\phi[M(K_{3,3})] = 4$
7.9.2 Structural Properties of the Middle Graph of Complete Bipartite Graph

The number of vertices in $M(K_{m,n})$, for $n \geq 2$, i.e. $p[M(K_{m,n})] = m + n + mn$. The maximum and minimum degree of $M(K_{m,n})$ are denoted as $\Delta = m + n$ and $\delta = \min(m,n)$ respectively. Here we find there are m copies of vertex disjoint subgraph K_m. The number of edges in $M(K_{m,n})$ is $q[M(K_{m,n})] = \frac{3mn + mn^2}{2} + \sum_{i=1}^{m} n(m - i)$.

7.9.3 Theorem

$$q[M(K_{m,n})] = \frac{3mn + mn^2}{2} + \sum_{i=1}^{m} n(m - i)$$

Proof

$$q[M(K_{m,n})] = \text{Number of edges in all } K_{n+1} + mn + \text{Remaining edges}$$

$$= mq(K_{n+1}) + nm + \text{Remaining edges}$$

$$= m\left[\frac{n(n+1)}{2} \right] + nm + \sum_{i=1}^{m} n(m - i)$$

$$= \frac{mn + mn^2 + 2mn}{2} + \sum_{i=1}^{m} n(m - i)$$
\[q[M(K_{m,n})] = \frac{3mn+mn^2}{2} + \sum_{i=1}^{m} n(m - i) \]

Therefore \(q[M(K_{m,n})] = \frac{3mn+mn^2}{2} + \sum_{i=1}^{m} n(m - i) \)

7.10 b-Chromatic Number of Middle Graph of Central Graph of Complete Graph

7.10.1 Theorem

For any \(n \geq 3 \), \(\phi(M[C(K_n)]) = n+2 \)

Proof

Let \(K_n \) be a Complete graph with \(n \) vertices and \(\left(\begin{array}{c} n \\ 2 \end{array} \right) \) edges. By the definition of Central graph, let \(v_{ij} \) be the newly introduced vertex in the edge connecting \(v_i, v_j \) \((1 \leq i \leq n-1, i+1 \leq j \leq n)\) in every \(K_n \). Let us consider the edges as \(e_{ij} = e_{ij} \) and \(e_{ij}, v_j = e_{ij}' \). Here we consider the undirected graph of \(K_n \), so we can have \(e_{ij} = e_{ij} \) and \(e_{ij}' = e_{ij}' \). By the definition of Middle graph, the vertices and edges in \(C(K_n) \) corresponds to the vertices of \(M[C(K_n)] \).

\[i.e. \ V(M[C(K_n)]) = \{v_i, v_{ij}, e_{ij}, e_{ij}' / 1 \leq i \leq n-1, i+1 \leq j \leq n\}. \]

Here each \(v_{ij} \) is adjacent with \(e_{ij} \) and \(e_{ij}' \), so that \(v_{ij}, e_{ij}, e_{ij}' \) forms a \(K_3 \) in every \(M[C(K_n)] \). By the definition of the Middle graph, the edges incident with vertex \(v_i \) together with the vertex \(v_i \) forms a complete graph of order \(n \). Hence it contains \(n \) copies of vertex disjoint \(K_n \) as subgraphs. Let us name the Complete subgraphs in anticlockwise direction namely \(K_n^1, K_n^2, ..., K_n^n \), and label the vertices of each \(K_n^i \) in anticlockwise direction as \(v_i^j \) for \(i=1,2,3..n, j=1,2,3..n \).

Here in \(M[C(K_n)] \) we see that in each \(K_n^{(i)} \) except the vertex \(v_i^j \) for \(i=j \), all the remaining vertices are adjacent with the two vertices other than \(v_i^j \) in all \(K_n^{(i)} \). By observation we see there are \(\frac{n(n-1)}{2} \) edge disjoint triangles in every \(M[C(K_n)] \).

Consider the colour class \(C=\{c_1,c_2,c_3...c_n,c_{n+1},c_{n+2}\} \). Now assign a proper colouring to these vertices as follows. Assign the colour \(c_j \) to the vertex \(v_i^j \) of \(K_n^j \) for \(j=1,2,3..n \) and assign \(c_{n+1} \) and \(c_{n+2} \) to the remaining two vertices of the triangle which is attached to the vertices of \(K_n^j \).

Now in \(K_n^j \) all the vertices \(v_i^j \) for \(j=2,3..n \) realizes its own colour except the vertex \(v_i^j \), which does not produce a b-chromatic colouring.
Thus to make the colouring as b-chromatic, assign a proper colouring i.e. assign only the preused colours to K_n^i for $i=2,3,...n$ such that every vertices realizes its own colour class. Suppose if we assign any new colour to any K_n^i ($2 \leq i \leq n$), it contradicts the definition of b-chromatic colouring. Thus by colouring procedure, the above said colouring is maximal and b-chromatic.

Example

![Figure 11: $\varphi\{M[C(K_4)]\} = 6$](image)

7.10.2 Structural Properties of Middle Graph of Central Graph of Complete Graph

In $M[C(K_n)]$ for $n \geq 2$, number of vertices in $M[C(K_n)] = \left[\frac{n(3n-1)}{2}\right]$, number of edges in $M[C(K_n)] = \left[\frac{n(n^2+2n-3)}{2}\right]$, maximum and minimum degree of $M[C(K_n)]$ are denoted as $\Delta = n+1$ and $\delta = 2$ respectively. In $M[C(K_n)]$ there are $\left[\frac{n^2-n}{2}\right]$ vertices of degree 2, n vertices of degree $(n-1)$, $n(n-1)$ vertices of degree $n+1$.

117
7.11 b-Chromatic number of Middle Graph of Central Graph of Star Graph

7.11.1 Theorem

For any integer $n \geq 2$, $\varphi\{M[C(K_{1,n})]\} = n+3$

Proof

Let $K_{1,n}$ be a Star graph with vertices $v, v_1, v_2, v_3, \ldots v_n$ i.e. $V[K_{1,n}] = \{v\} \cup \{v_i / I \leq i \leq n\}$ and $E[K_{1,n}] = \{e_i / I \leq i \leq n\}$ where $deg(v) = n$. By the definition of Central graph, let v_i' ($I \leq i \leq n$) be the newly introduced vertices in the edge connecting $v v_i$ in $K_{1,n}$. Let e_i be the edge between $v v_i'$ and e_i' be the edge $u_i v_i$ for $I \leq i \leq n$ i.e. $V[C(K_{1,n})] = \{v\} \cup \{v_i / I \leq i \leq n\} \cup \{v_i'/I \leq i \leq n\}$ and $E[C(K_{1,n})] = \{e_i / I \leq i \leq n\} \cup \{e_i'/I \leq i \leq n\} \cup \{e_{ij} : I \leq i \leq n-1, 2 \leq j \leq n\}$. By the definition of Middle graph, the vertex set and the edge set in $C(K_{1,n})$ corresponds to the vertex set of $M[C(K_{1,n})]$. i.e. $V[M[C(K_{1,n})]] = \{v\} \cup \{v_i / I \leq i \leq n\} \cup \{v_i'/I \leq i \leq n\} \cup \{e_i / I \leq i \leq n\} \cup \{e_i'/I \leq i \leq n\} \cup \{u_i / I \leq i \leq n\}$

where $u_i = \{e_{ij} / j=1,2,3..i-1,i+1,\ldots n, I \leq i \leq n\}$ and let $u'' = u_1 + u_2 + u_3 + \ldots u_n$.

Clearly $|u''| = \frac{n(n-1)}{2}$. Here we see that the vertices $v, e_1, e_2, \ldots e_n$ induces a clique of order $n+1$. Also the vertices v_i and e_i' together with u_i induces another clique of order $n+1$ but there is only one vertex common to both cliques of order $n+1$ i.e. each vertex e_i is adjacent only with e_i' for $i=1,2,3,\ldots n$.

Consider the colour class $C = \{c_1, c_2, c_3, \ldots c_n, c_{n+1}, c_{n+2}\}$. Now assign a proper colouring to $M[C(K_{1,n})]$ as follows. Assign the colour c_1 to the root vertex v and assign the colour c_{i+1} to the vertex e_i for $i=1,2,3,\ldots n$. Next assign the colour c_{n+2} to v_i' for $i=1,2,3,\ldots n-1$ and for remaining v_i' assign the colour c_{n+3}. Similarly, assign the colour c_{n+3} to e_i' for $i=1,2,3,\ldots n-1$ and for remaining e_i' assign the colour c_{n+2}. For $i=2,3,\ldots n$ assign the colour c_i to v_i and assign the colour c_{n+1} to v_1. Next assign the colour c_i to the vertex $\frac{u_n(n-1)}{2}$ and assign only the preused colours to the vertices of u_i other than the previously coloured vertex, such that the vertices in $M[C(K_{1,n})]$ realizes $n+3$ colours, which produces a b-chromatic colouring. Note that rearrangement of colours will also be not possible for more than $n+3$ colours. Thus by the colouring procedure the above said colouring is maximum and b-chromatic.
Example

Figure 12: $C(K_{1,3})$

Figure 13: $\varphi\{M[C(K_{1,3})]\} = 6$

7.12 b-Chromatic Number of Middle Graph of Complete Graph

7.12.1 Theorem

If K_n be a Complete graph on n vertices, then $\varphi[M(K_n)] = n$ for every $n > 2$.
Proof

Let \(K_n \) be a complete graph with vertex set \(V(K_n)=\{v_1,v_2,v_3...v_n\} \). By the definition of the Middle graph, for \(1\leq i \leq n-1, i+1\leq j \leq n \), let \(v_{ij} \) represent the newly introduced vertex in the edge connecting \(v_i \) and \(v_j \). Here we have considered only the undirected graph so we can have \(v_{ij}=v_{ji} \). Middle graph of \(K_n \) has the vertex set \(\{v_i: 1\leq i \leq n\} \cup \{v_{ij}: 1\leq i \leq n-I, i+1\leq j \leq n\} \). Here there are \(n \) vertices of degree \(n-1 \) and \(\binom{n}{2} \) vertices of degree \(2n-2 \). By the definition of Middle graph, the vertex \(v_i \) together with incident edges induces a clique of order \(n \) i.e. (say \(K_n \)) in \(M(K_n) \).

In \(M(K_n) \), we find \(n \) copies of edge disjoint \(K_n \). Let \(K_n^i \) be the cliques in \(M(K_n) \) for \(i=1,2,3..n \). Now assign a proper colouring to the above vertices as follows. Let us consider the colours \(c_1, c_2, c_3,...,c_n \). First consider the complete graph \(K_n^i \) for \(i=1 \), assign the colour \(c_1 \) to the vertices of \(K_n^i \), which produces a b-chromatic colouring.

Next suppose if we assign any new colour to the remaining vertices of \(K_n^i \) for \(i=2,3..n \), it contradicts the definition of b-chromatic colouring because here all \(K_n^i \) are edge disjoint complete subgraphs. Hence we should assign only the same set of colours to the remaining subgraphs. Note that rearrangement of colours also fails to accommodate the new colour class. Thus by the colouring procedure the above said colour is maximum and b-chromatic.

Example

![Diagram](attachment:image.png)

*Figure 14: \(\varphi[M(K_3)]=3 \)
7.12.2 Structural Properties of the Middle Graph of Complete Graph

The number of vertices in $M(K_n)$, for $n \geq 2$, i.e. $p[M(K_n)] = \left\lceil \frac{n(n+1)}{2} \right\rceil$, the maximum and minimum degree of $M(K_n)$ are denoted as $\Delta = 2n-2$ and $\delta = n-1$ respectively. We find n copies of edge disjoint subgraph K_n and there are n vertices of degree $n-1$, $\left\lceil \frac{n(n-1)}{2} \right\rceil$ vertices of degree $2n-2$. The number of edges in $M(K_n)$, i.e. $q[M(K_n)] = n\left(\begin{array}{c} n \\ 2 \end{array} \right)$

7.12.3 Theorem

For any integer $n > 2$, the number of edges in Middle graph of Complete graph is $q[M(K_n)] = n\left(\begin{array}{c} n \\ 2 \end{array} \right)$

Proof

\[q[M(K_n)] = n \times \text{edges in all } K_n = n \times q(K_n) = n \left(\left\lceil \frac{n(n-1)}{2} \right\rceil \right) = n\left(\begin{array}{c} n \\ 2 \end{array} \right) \]

Therefore $q[M(K_n)] = n\left(\begin{array}{c} n \\ 2 \end{array} \right)$

7.12.4 Theorem

For every $n \geq 3$, $\phi\{M[L(K_{1,n})]\} = n$

Proof

$L(K_{1,n}) \cong K_n$. By theorem 7.12.1 we have $\phi\{M[L(K_{1,n})]\} = n$.

121