CHAPTER 5
THREE TRANSISTORS (3T) BASED LOGIC GATES

5.1 INTRODUCTION

This Chapter presents an area and energy efficient OR, AND, Universal NAND and NOR gates. The proposed robust three transistors (3T) based gates are just as effective for dynamic power control in CMOS VLSI circuits for System on Chip (SoC) applications. The 3T based logic gates intuitively momentous and lead to better performance measures in terms of dynamic power, reduced area and high speed while maintaining comparable performance than the other available logic gate structures. The importance of universal gates is described which is followed by CMOS inverter and Pass Transistor Logic (PTL) that are used to build the 3T based logic gates. This chapter will give detailed operation of 3T based logic gates with transistor sizing and existing logic structures of gates to compare with 3T based logic gates. Finally, a D-latch is implemented with the proposed 3T NAND gate.

5.2 SIGNIFICANCE OF UNIVERSAL GATES

In order to realize ultra low power SOC applications, circuits should be operated with low power dissipating gates. In reality, digital control systems have been designed approximately with either NAND or NOR gates, all the essential logic functions being derived from collections of interconnected NANDs or NORs. Low power and high reliability needs along with cost/performance advantages make NAND flash memory the ideal data storage solution for portable electronics.
The significance of a universal gate is that programmable chips can be made up of only one kind of gate, either NAND or NOR gate making manufacturing process simple and reducing the numbers of different processors required to make a computer. The benefit of utilizing a combination of low-power components in conjunction with low-power design methodologies is more important now than ever before. Low power requirements continue to grow extensively as components become battery-powered, smaller and require more functionality.

Koomey’s law describes a long-term trend in the history of computing hardware and has actually been somewhat faster than Moore’s law. Jonathan Koomey articulated the trend as follows: “at a fixed computing load, the amount of battery you need will fall by a factor of two every year and a half” (Koomey Jonathan 2011). Designers are progressively more turning to embedded NAND solutions for dynamic, on-board storage. To support the ever-changing needs of current and emerging applications, the authors have developed the most appropriate NAND solution for these applications.

5.3 NAND PREFERRED THAN NOR

The PMOS devices in series lead to very poor rise time performances as poor output node charge to V_{DD} in conventional CMOS NOR gate. Meanwhile, the CMOS NMOS device in parallel provides a very efficient path for discharge to ground, leading a short fall time. Due to this non-symmetrical behaviour NAND gate based designs are preferred because of the PMOS in parallel which naturally compensate the poor hole mobility of their channel, producing symmetrical switching characteristics than NOR gate.
Due to importance of NAND gate, the 3T based NAND gate is simulated and analysed in 90nm, 45nm and 22nm process technologies. The 3T NAND gate has been compared with other existing NAND gate structures at 90nm process technology. A D-latch is designed using 3T NAND gate and compared with other existing D-Latch structures. Also C17 benchmark circuit is used for 3T NAND gate evaluation.

5.4 REVIEW OF CMOS INVERTER AND PTL

5.4.1 CMOS Inverter

CMOS inverters are some of the most largely used and adaptable MOSFET inverters in chip designing. They operate with minimal power loss and at relatively high speed. Furthermore, the CMOS inverter has good logic buffer characteristics in that. Its noise margins are large in both low and high states.

A CMOS inverter shown in Figure 5.1 contains a PMOS and a NMOS devices connected at the drain and gate terminals, a supply voltage V_{DD} at the PMOS source terminal, and a ground connected at the NMOS source terminal, were INPUT is connected to the gate terminals and OUTPUT is connected to the drain terminals. As the input to the inverter varies between logic 0 and logic 1, the state of the NMOS and PMOS varies accordingly to make output as logic 1 and logic 0 respectively.
5.4.2 Pass Transistor Logic

A popular and widely used alternative to complementary CMOS is pass-transistor logic. Pass-transistor logic attempts to decrease the quantity of transistors necessary to realize the logic by allowing the principal inputs to drive gate terminals (Radhakrishnan 1985) as well as drain/source terminals as shown in Figures 5.2 and 5.3. It is also observed from Figures 5.2 and 5.3, that, when the device is getting used as a pass-transistor may conduct current in either direction.

![Diagram of CMOS Inverter](image)

Figure 5.1 CMOS Inverter

![Diagram of NMOS Pass Transistor Logic](image)

Figure 5.2 NMOS - Pass transistor logic
The NMOS transistors pass a strong logic 0 but a weak logic 1 (threshold voltage drop. High = \(V_{DD} - V_{thn} \)) and PMOS transistors pass a strong logic 1 but a weak logic 0 (threshold voltage drop. Low = \(V_{thp} \)). Thus, NMOS switches are best for pull-down network and the PMOS switches are best for pull-up network. Keeping these in view, the study adopted a quasi-experimental research method.

5.5 DESIGN OF 3T LOGIC GATES

The 3T OR and AND gates design is based on PMOS and NMOS Pass Transistor Logic (PTL). The 3T NAND and NOR gates design is based on CMOS inverter and PTL. Output voltage degradation occurs across the PMOS and NMOS pass transistors due to threshold voltage drop while passing the logic zero or logic one respectively in relation to the input. The voltage degradation caused by threshold drop can be considerably minimized by escalating the W/L ratio of the pass transistor. Equation (5.1) relates the threshold voltage of a MOS transistor to its channel length and width.

\[
V_{th} = V_{th0} + g \left(\sqrt{V_{SB} + \square_0} \right) - \alpha_l \frac{\tau_{ox}}{L} \left(V_{SB} + \square_0 \right) - \\
\left(\alpha_v \frac{\tau_{ox}}{L} V_{ds} \right) + \alpha_w \frac{\tau_{ox}}{W} \left(V_{SB} + \square_0 \right)
\]

\((5.1)\)
where t_{ox} is the thickness of the oxide layer, V_{th0} is the zero bias threshold voltage, g is bulk threshold coefficient, φ_0 is $2\varphi_F$, where φ_F is the Fermi potential, and α_1, α_v, and α_w are process dependent parameters. From Equation (5.1), it is obvious that by increasing the width W of a transistor, keeping the length constant it is possible to reduce the voltage degradation due to the threshold voltage.

5.5.1 Three Transistors based OR Gate

The 3T OR gate is shown in Figure 5.4. Typical values of transistor widths $W_p = 5\, \mu\text{m}$ for PMOS M1, $W_p = 3\, \mu\text{m}$ for PMOS M2, and $W_n = 5.0\, \mu\text{m}$ for NMOS M3 have been taken. The length for all the transistors have been taken constantly as $L = 0.022\, \mu\text{m}$ (22 nm) for 22nm process technology.

![Three transistors based OR gate](image)

Figure 5.4 Three transistors based OR gate

- When input $A = \text{input } B = 0$, the two PMOS M1 and M2 are ON and NMOS M3 is OFF. The transistors M1 and M2 functions as a pass transistor (Transistor M1 is more stronger than other transistor M2 and passes B) giving an output logic zero.
When input \(A=0 \) and input \(B=1 \), transistor M1 is ON and transistors M2 and M3 are OFF. Transistor M1 passes the input \(B=1 \) to the output.

When input \(A=1 \) and input \(B=0 \), transistor M1 is OFF and transistors M2 and M3 are ON passing input \(A \) to give an output logic 1.

When input \(A=1 \) and input \(B=1 \), the transistors M1 and M2 are OFF and transistor M3 is ON passing \(V_{DD} \), a logic 1 at output. Thus the entire circuit functions as an OR gate. NOR gate function could be obtained by inverting the 3T OR gate output using only five transistors as shown in Figure 5.5.

![Diagram of the NOR gate](image)

Figure 5.5 Five transistors based NOR gate

Table 5.1 shows the state of each transistor in 3T OR gate during all possible input combinations and the corresponding output logic. Figure 5.6 gives the input-output waveform of 3T OR gate.
Table 5.1 State table of 3T OR gate

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Transistor State</th>
<th>OR Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B</td>
<td>M1 M2 M3</td>
<td></td>
</tr>
<tr>
<td>0 0</td>
<td>On On Off</td>
<td>0/ B</td>
</tr>
<tr>
<td>0 1</td>
<td>On Off Off</td>
<td>1/ B</td>
</tr>
<tr>
<td>1 0</td>
<td>Off On On</td>
<td>1/ A</td>
</tr>
<tr>
<td>1 1</td>
<td>Off Off On</td>
<td>1/ VDD</td>
</tr>
</tbody>
</table>

Figure 5.6 Input/output waveform of 3T OR gate @ 22nm with $V_{DD}=0.2V$

5.5.2 Three Transistors based AND Gate

The 3T AND gate is shown in Figure 5.7. Typical values of transistor widths $W_n = 5\mu m$ for NMOS M1, $W_n = 2\mu m$ for NMOS M2, and $W_p = 5.0\mu m$ for PMOS M3 have been taken. The length for all the transistors have been taken constantly as $L= 0.022\mu m$ (22 nm).
Figure 5.7 Three transistors based AND gate

- When input $A = 0$ and input $B = 0$, the two NMOS M_1 and M_2 are OFF and PMOS M_3 is ON. The transistors M_3 connects the output line to ground giving an output logic zero.

- When input $A = 0$ and input $B = 1$, transistor M_1 is ON and transistors M_2 and M_3 are OFF. Transistor M_1 passes the input $A = 0$ to the output.

- When input $A = 1$ and input $B = 0$, transistor M_1 is OFF and transistors M_2 and M_3 are ON passing input B to give an output logic 0.

- When input $A = 1$ and input $B = 1$, the transistors M_1 and M_2 are ON and transistor M_3 is OFF. This condition passes input A giving a logic 1 at output (Transistor M_1 is more stronger than other transistor M_2 and passes A). The NAND gate function could be obtained by inverting the 3T AND gate output as shown in Figure 5.8 using only five transistors.
Figure 5.8 Five transistors based NAND gate

Table 5.2 shows the state of each transistor in 3T AND gate during all possible input combinations and the corresponding output logic. Figure 5.9 gives the input-output waveform of 3T AND gate.

Table 5.2 State table of 3T AND gate

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Transistor State</th>
<th>AND Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>M1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Off</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>On</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Off</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>On</td>
</tr>
</tbody>
</table>
Figure 5.9 Input/output waveform of 3T AND gate @ 22nm with $V_{DD}=0.2V$

5.5.3 Three Transistors based NOR Gate

The new NOR gate design using only three transistors (3T) is shown in Figure 5.10. The design is based on modified CMOS inverter and PMOS pass-transistor logic. The 3T NOR functionality can be detailed as follows.

Figure 5.10 Three transistors based NOR gate
The PMOS M1 and NMOS M2 on the left form a modified CMOS inverter structure. The NMOS M3 on the right acts as a pass transistor.

When A=0, M3 is OFF and the modified inverter on the left (M1 and M2) functions as a normal CMOS inverter. Therefore, the output is the complement of input B.

When A=1 and B=0, M2 is OFF, M1 and M3 are ON which leads to an undefined output state ‘X’, because M1 tends to pull up the output node while M3 tends to pull down the output node.

Similarly when A=1 and B=1, M1 is OFF, M2 and M3 are ON leading to an undefined output state ‘X’, because M2 tends to pull up the output node while M3 tends to pull down the output node.

For A=1 and B=0 or 1, a strong logic ‘0’ output is required. It is possible to obtain exact output logic levels with the proposed circuit, if the channel width of M3 is made 6 times that of M2 or 3 times that of M1.

(i.e) \(W_{M3} = 6 \times W_{M2} = 3 \times W_{M1} \)

Thus M3 becomes much stronger than M1 and M2, giving a strong logic ‘0’ at output when input A=1. For 0.022 \(\mu \text{m} \) (22nm) process, the length of the channel for all transistors was taken as \(L=0.022 \ \mu \text{m} \), channel width of M1, \(W_{M1} = 0.200 \ \mu \text{m} \), channel width of M2, \(W_{M2} = 0.100 \ \mu \text{m} \), and channel width of M3, \(W_{M3} = 0.600 \ \mu \text{m} \).
The proposed 3T NOR gate is free from body bias effect, as there is no stacking of transistors. Exact output logic levels are attained for all the input combinations without any voltage degradation. OR gate operation could be obtained with an additional CMOS inverter at the 3T NOR gate output with 5 transistors only as shown in Figure 5.11.

![Five Transistors based OR gate](image)

Figure 5.11 Five Transistors based OR gate

Table 5.3 shows the state of each transistor in 3T NOR gate during all possible input combinations and the corresponding output logic. Figure 5.12 gives the input-output waveform of 3T NOR gate.

Table 5.3 State table of 3T NOR gate

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Transistor State</th>
<th>NOR Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CMOS Inverter</td>
<td>NMOS Pass Transistor</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>M1</td>
</tr>
<tr>
<td>0/0</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>0/1</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>1/0</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>1/1</td>
<td>Off</td>
<td>On</td>
</tr>
</tbody>
</table>
Figure 5.12 Input/output waveform of 3T NOR gate @ 22nm with $V_{DD}=0.2V$

5.5.4 Three Transistors based NAND Gate

The new design of 3T NAND gate is shown in Figure 5.13. The high density layout, speed and compact design advantages of PTL and CMOS inverter design style can be utilized efficiently to design 3T NAND circuit. The 3T NAND functionality can be explained as follows.

Figure 5.13 Three transistors based NAND gate
The PMOS M1 and NMOS M2 on the left form a modified CMOS inverter structure. The PMOS M3 on the right acts as a pass transistor.

When A=1, M3 is OFF and the modified inverter on the left (M1 and M2) functions as a normal CMOS inverter. Therefore, the output is the complement of input B.

When A=0 and B=0, M2 is OFF, M1 and M3 are ON which leads to an undefined output state ‘X’, because M1 tends to pull down the output node while M3 tends to pull up the output node. Similarly when A=0 and B=1, M1 is OFF, M2 and M3 are ON leading to an undefined output state ‘X’, because M2 tends to pull down the output node while M3 tends to pull up the output node.

For A=0 and B=0 or 1, a strong logic ‘1’ output is required. It is possible to obtain exact output logic levels with the proposed circuit, if the channel width of M3 is made 6 times that of M2 or 3 times that of M1.

\[W_{M3} = 6 \times W_{M2} = 3 \times W_{M1} \]

Thus M3 becomes much stronger than M1 and M2, giving a strong logic ‘1’ at output when input A=0. This is better understandable from Table 5.4.

The proposed 3T NAND gate is exempt from body bias effect, as there is no stacking of transistors. Exact output logic levels are attained for all the input combinations without any voltage degradation. An AND gate operation could be obtained with an additional CMOS inverter at the 3T NAND gate output with 5 transistors totally as shown in Figure 5.14. Table 5.4 shows the state of each transistor in 3T NAND gate for various
input combinations. Transfer characteristics (input-output waveform) for proposed 3T NAND gate with perfect output logic levels without any voltage degradation is shown in Figure 5.15 and Figure 5.16 for 22nm and 90nm process technologies respectively.

![Figure 5.14 Five transistors based AND gate](image)

Table 5.4 State table of 3T NAND gate

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Transistor State</th>
<th>NAND Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CMOS Inverter</td>
<td>PMOS Pass Transistor</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>M1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>On</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Off</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>On</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Off</td>
</tr>
</tbody>
</table>
Figure 5.15 Transfer characteristics of 3T NAND gate at 22nm with $V_{DD}=0.2V$

Figure 5.16 Transfer characteristics of 3T NAND gate at 90nm with $V_{DD}=1V$
5.6 EXISTING LOGIC STRUCTURES FOR COMPARISON

Logic gates of different logic structures reported in literature such as CMOS Logic, Double Pass Transistor Logic, Complementary Pass transistor Logic and Dual Value Logic have been considered for comparison with 3T logic gates for performance evaluation.

5.6.1 Complementary CMOS Logic Style

Logic gates in conventional or complementary CMOS (also simply referred to as CMOS in the sequel) are built from an NMOS pull-down and a dual PMOS pull-up logic network. In addition, pass-gates or transmission gates (i.e., the combination of an NMOS and a PMOS pass-transistor) are often used for implementing multiplexers, XOR-gates, and flip-flops efficiently. Any logic function can be realized by NMOS pull-down and PMOS pullup networks connected between the gate output and the power lines. Figure 5.17 shows logic gates in CMOS structure.

![Logic Gates in CMOS Structure](image)

Figure 5.17 Gates in CMOS logic (a) OR (b) AND (c) NOR and (d) NAND
5.6.2 Pass Transistor Logic Styles

The basic difference of Pass-Transistor Logic (PTL) compared to the CMOS logic style is that the source side of the logic transistor networks is connected to some input signals instead of the power lines. The advantage is that one pass transistor network (either NMOS or PMOS) is sufficient to perform the logic operation, which results in a smaller number of transistors and smaller input loads, especially when NMOS networks are used. Figure 5.18 shows logic gates in PTL structure.

![Logic Gates in PTL](image)

Figure 5.18 Gates in NMOS PTL (a) OR (b) AND (c) NOR and (d) NAND
5.6.3 Complementary Pass-Transistor Logic

Complementary Pass-Transistor Logic (CPL) consists of complementary inputs/outputs, a NMOS pass-transistor network, and CMOS output inverters. The circuit function is implemented as a tree consisting of pull-down and pull-up branches. Since the threshold voltage drop of NMOS transistor degrades the “high” level of pass-transistor output nodes, the output signals are restored by CMOS inverters. CPL has traditionally been applied to the arithmetic building blocks and has been shown to result in high speed operation due to its low input capacitance and reduced transistor count. All two-input functions (e.g. AND, OR, XOR, XNOR, NAND AND NOR) can be implemented by this basic gate structure, which is relatively expensive for simple monotonic gates such as NAND and NOR. Figure 5.19 shows logic gates in CPL structure.

![Gates in CPL](image)

Figure 5.19 Gates in CPL (a) AND-NAND (b) OR-NOR
5.6.4 Double Pass-Transistor Logic

To avoid problems of reduced noise margins in CPL, twin PMOS transistor branches are added to N-tree in DPL. This addition results in increased input capacitances. However its symmetrical arrangement and double-transmission characteristics compensate for the speed degradation arising from increased loading. The full swing operation improves circuit performance at reduced supply voltage with limited threshold voltage scaling. Figure 5.20 shows logic gates in DPL structure.

Figure 5.20 Gates in DPL (a)OR (b)AND (c)NOR and (d)NAND
5.6.5 Dual Value Logic

The main drawback of Dual Value Logic (DPL) is its redundancy, i.e. it requires more transistors than actually needed for the realization of a function. To overcome the problem of redundancy, a new logic family, DVL, is derived from DPL. It preserves the full swing operation of DPL with reduced transistor count. Figure 5.21 shows logic gates in DVL structure.

![Logic Gates Diagram](image)

Figure 5.21 Gates in DVL (a)OR (b)AND (c)NOR and (d)NAND
5.7 SIMULATION RESULTS

5.7.1 Evaluation of 3T Logic Gates

In order to compare the results of proposed 3T based logic gates with existing logic gate structures, a set of experiments was carried out. Schematics were designed for all circuits using Custom Designer in Synopsys for TSMC 0.18μm technology. Netlists obtained from the schematics are used to simulate and test performance.

The original netlists are modified according to the process technology targeted using Berkeley Predictive Technology Model (BPTM) 22nm process. The modified netlists are simulated using Synopsys HSPICE for power and delay estimations. The worst case power and delay measurements are made in all the cases with the operating temperature as 27°C. The performance of the circuit is evaluated based on their power dissipation and delay.

The transfer characteristics of proposed 3T logic gates using HSPICE gave exact output logic levels without any voltage degradation. Logic gates of different logic structures reported in literature such as CMOS Logic, Double Pass Transistor Logic, Complementary Pass transistor Logic and Dual Value Logic have been simulated and comparisons have been presented in Table 5.5.

For all logics except 3T logic gates, the transistor sizes are taken as width \(W_P = 3.0 \mu m \) for PMOS and \(W_n = 1.5 \mu m \) for NMOS with constant length of \(L = 0.022 \mu m \) (22nm). All devices used are of standard threshold voltage (Vth). Figure 5.22 show that the proposed logic gates have the minimal number of transistors than the other logic gates.
From the results in Table 5.5, the following can be inferred:

- The dynamic power dissipation and area increases with the increase in number of switching transistors.
- Column 10 indicates that there is a lower power dissipation (dynamic and leakage) for a 3 transistor based logic gates compared to other logic gate structures.
- With a focus on delay, from column 11, the optimum delay for 3 transistor based logic gates obtained.
- Column 12 shows that 3T logic gates provide an average of 87.5% power savings compared with CMOS base case.
Table 5.5 Power dissipation (W) and delay (ps) profiles for the logic gate circuits in 22nm process technology

<table>
<thead>
<tr>
<th>Logic Gate @ V_{DD}= 0.2V</th>
<th>CMOS logic</th>
<th>Double Pass Transistor Logic (DPL)</th>
<th>Complementary Pass Transistor Logic (CPL)</th>
<th>Dual Value Logic (DVL)</th>
<th>Proposed 3T based Power Savings compared to CMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Power</td>
<td>Delay</td>
<td>Power</td>
<td>Delay</td>
<td>Power</td>
</tr>
<tr>
<td>OR</td>
<td>3.6147 E-12</td>
<td>63.8</td>
<td>6.3240 E-12</td>
<td>55.8</td>
<td>4.1832 E-12</td>
</tr>
<tr>
<td>AND</td>
<td>3.9532 E-12</td>
<td>51.9</td>
<td>5.9632 E-12</td>
<td>53.3</td>
<td>4.6108 E-12</td>
</tr>
<tr>
<td>NAND</td>
<td>2.4743 E-12</td>
<td>47.1</td>
<td>5.5184 E-12</td>
<td>49.5</td>
<td>5.8200 E-12</td>
</tr>
<tr>
<td>NOR</td>
<td>2.7644 E-12</td>
<td>54.8</td>
<td>5.7154 E-12</td>
<td>53.2</td>
<td>6.0181 E-12</td>
</tr>
</tbody>
</table>
5.7.2 Evaluation of 3T Logic Gates with Two Level Network

The 3T gates are evaluated for the case of multi-level logic where gates are cascaded one after the other to achieve more complex logic functions. Figure 5.23 and Figure 5.24 shows the gate level and transistor level circuits of a two level network with single output taken for evaluation. The circuit was simulated using HSPICE at 22nm with $V_{DD}=0.2V$ and the results are tabulated in Table 5.6. Table 5.6 shows that the example circuit implemented using 3T gates have only a transistor count of 60% compared to the CMOS implementation leading to less chip area. The power dissipation and delay comparisons in Table 5.6 shows that 3T gates based circuit outperforms the CMOS based circuit. The 3T based logic gates are designed for having only two inputs. This may increase the design complexity of larger circuits in terms of area penalty. This imposes a need for multi-input logic gates with reduced transistor count which is considered as one of the future work of this research.

Figure 5.23 Single output - two level network (Gate level)
Figure 5.24 Single output - two level network (Transistor level)

Table 5.6 Simulation results for single output - two level network

<table>
<thead>
<tr>
<th>Circuit</th>
<th>CMOS Based</th>
<th>Proposed 3T Based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Power (W)</td>
<td>21.5219 E-12</td>
<td>15.2663 E-12</td>
</tr>
<tr>
<td>Delay (ps)</td>
<td>74.5</td>
<td>59.1</td>
</tr>
<tr>
<td>No. of transistors</td>
<td>20</td>
<td>12</td>
</tr>
</tbody>
</table>

5.7.3 Additional Experiments on 3T NAND Gate

Additional experiments were carried out on 3T NAND gate due to its significance in low power applications. The Performance of the 3T NAND gate is evaluated by employing standard Berkeley Predictive Technology Model (BPTM) 22nm, 45nm and 90nm process technologies. The experiment and simulation results show that, proposed 3T NAND gate effectively
outperforms the basic CMOS NAND gate with excellent driving capability and signal integrity with exact output logic levels. All devices used are of standard threshold voltage and the operating temperature taken is 27°C. The 3T NAND gate ensures optimum performance for frequency range between 50MHz to 0.3GHz. All the results were simulated and analyzed in the range of 125 MHz to 0.25GHz.

Figure 5.25 gives the layout of 3T NAND gate. Table 5.7 shows the simulation results of 3T & 4T NAND gates compared at 90nm, 45nm and 22nm process technology (Zhao and Cao, 2006). Dynamic power dissipation is estimated by applying all four possible input vectors (00, 01, 10 and 11) arbitrarily. Table 5.8 gives the simulation results of 3T NAND at 22nm process for various supply voltages (0.2 V, 0.45V, 0.6V & 0.75V).

Transistor sizing details are given as:

- For 0.022 μm (22nm) process, the length of the channel for all transistors was taken as L=0.022 μm, channel width of M1, \(w_{M1} = 0.200 \mu m \), channel width of M2, \(w_{M2} = 0.100 \mu m \), and channel width of M3, \(w_{M3} = 0.600 \mu m \).

- For 0.045 μm (45nm) process, the length of the channel for all transistors was taken as L=0.045 μm, channel width of M1, \(w_{M1} = 1.000 \mu m \), channel width of M2, \(w_{M2} = 0.500 \mu m \), and channel width of M3, \(w_{M3} = 3.000 \mu m \).

- For 0.090 μm (90nm) process, the length of the channel for all transistors was taken as L=0.090 μm, channel width of M1, \(w_{M1} = 2.000 \mu m \), channel width of M2, \(w_{M2} = 1.000 \mu m \), and channel width of M3, \(w_{M3} = 6.000 \mu m \).
From Table 5.7, the following can be inferred:

- Considering the power dissipation, 3T NAND gate shows less dynamic power dissipation compared to conventional CMOS NAND gate. The reduction in dynamic power dissipation comes from the fact of reduced internal capacitances as transistors count is less, which results in less glitches at the outputs.

- With regards of the speed, it can be seen the benefit of the pass transistor logic structure introduced here, exhibiting the smallest propagation delay than CMOS NAND gate.

- The Power Delay Product (PDP) column confirms the energy-efficiency for the 3T NAND gate built using the new logic structure. They present the lowest PDP metric, due to the combined reduction of power consumption and propagation delay.
Table 5.7 Simulation results of NAND gate for various process technologies

<table>
<thead>
<tr>
<th>Parameters</th>
<th>90nm@V_{DD}=1.2V</th>
<th>45nm@V_{DD}=0.5V</th>
<th>22nm @ V_{DD}=0.2V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic power (W)</td>
<td>8.4200 E-09</td>
<td>10.2812 E-09</td>
<td>4.9058 E-11</td>
</tr>
<tr>
<td>Delay(ps)</td>
<td>54.8</td>
<td>75.2</td>
<td>43.6</td>
</tr>
<tr>
<td>PDP_{dynamic}(J)</td>
<td>461.4 E-21</td>
<td>773.1 E-21</td>
<td>213.8 E-23</td>
</tr>
</tbody>
</table>

From Table 5.8, the following can be inferred:

- In addition, separate set of simulations are carried out to determine the maximum power supply voltage that 3T NAND gate can tolerate at 0.022\mu m (22nm) process technology while maintaining its correct functionality. As shown in column 1, supply voltage, the proposed NAND can operate properly with 0.2 to 0.8 V supply voltage.

- With increase in supply voltage, the dynamic power increases and the delay improves.

- The average power column for different input vectors shows the fact that subthreshold leakage is dependent on input vectors.

- On regards of the implementation area, it can be seen that the proposed NAND gate require the smallest area due to less transistor count, which can also be considered as one of the factors for presenting lower delay and power consumption.

- It is a good candidate for battery-operated applications where low dissipation modules with standby modes are required.
Table 5.8 Simulation results of 3T NAND gate @ 0.022 μm (22nm) for various supply voltages (supply voltage in V, power in W and delay in ps)

<table>
<thead>
<tr>
<th>Supply Voltage</th>
<th>Dynamic Power</th>
<th>Delay</th>
<th>Average Power for Various Input Vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>00</td>
</tr>
<tr>
<td>0.2</td>
<td>1.8661 E-12</td>
<td>38.2</td>
<td>3.0021 E-13</td>
</tr>
<tr>
<td>0.45</td>
<td>5.8167 E-12</td>
<td>37.4</td>
<td>6.7812 E-13</td>
</tr>
<tr>
<td>0.6</td>
<td>10.6535 E-12</td>
<td>37.0</td>
<td>9.3406 E-13</td>
</tr>
<tr>
<td>0.75</td>
<td>16.3971 E-12</td>
<td>36.6</td>
<td>11.3810 E-13</td>
</tr>
</tbody>
</table>

Figure 5.26 gives the percentage of power savings of 3T NAND gate showing an improvement of more than 22% of less power consumption over conventional CMOS NAND Gate (4T) as the process technology diminishes.

![Power Savings](image)

Figure 5.26 Power savings of 3T NAND gate
From the results in Table 5.9, the following can be inferred:

- The dynamic power dissipation, leakage power dissipation and area increases with the increase in number of switching transistors.
- The rows 3 and 7 indicate that there is a lower power dissipation (dynamic and leakage) for a 3 transistor based NAND gate compared to other NAND gate circuits.
- With a focus on delay, from rows 4 and 5 the optimum delay and power delay product for a 3 transistor based NAND gate can be obtained.
- The implementation area obtained from the layouts, it can be seen that 3 transistor based NAND gate require smaller area as compared to other circuits, as shown in row 6.

Table 5.9 Simulation results for the NAND gate circuits in 90nm process technology

<table>
<thead>
<tr>
<th>NAND Circuit @ V_{DD}=1 V</th>
<th>CMOS Logic</th>
<th>DPL</th>
<th>CPL</th>
<th>PTL</th>
<th>DVL</th>
<th>Proposed 3T NAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Transistors</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Delay (ns)</td>
<td>0.0785</td>
<td>0.0765</td>
<td>0.0761</td>
<td>0.0961</td>
<td>0.0725</td>
<td>0.0575</td>
</tr>
<tr>
<td>Power Delay Product (E-15 J) (dynamic)</td>
<td>0.6095</td>
<td>0.6450</td>
<td>0.6658</td>
<td>0.7234</td>
<td>0.5130</td>
<td>0.3715</td>
</tr>
<tr>
<td>Area (µm^2)</td>
<td>36.29</td>
<td>66.8</td>
<td>67.3</td>
<td>51.8</td>
<td>43.9</td>
<td>28.86</td>
</tr>
<tr>
<td>Leakage Power (E-012 W) (stand by)</td>
<td>0.8</td>
<td>1.4</td>
<td>1.7</td>
<td>1.02</td>
<td>0.89</td>
<td>0.5</td>
</tr>
</tbody>
</table>
5.7.4 D-Latch Implementation

A D-latch has one input, labeled D, one enable or clock input, and one output Q as shown in the symbol of a D-Latch in Figure 5.27. The logical state of the D input is transferred to the output whenever the clock /enable (CLK/E) input is HIGH. The Q output will follow any changes in the logical state of the D input as long as the clock input remains HIGH.

When the clock input goes LOW the logical state of the D input at that moment will be retained at the Q output no matter what changes occur at the D input. When the clock input goes HIGH again the Q output will once again follow any changes in the logical state of the D input. A D latch is therefore said to be transparent when the clock is HIGH. Figure 5.28 and Figure 5.29 gives the NAND gate and transmission gate based implementations respectively.

![D-Latch Symbol](image_url)

Figure 5.27 D-Latch
Table 5.10 gives the comparison of simulation results obtained for a D-latch shown in figure 5.28 implemented using 3T NAND gates and other gates. The D-latch with 10 transistors (transmission gate based) and 16 transistors (using CMOS NAND gate with 4 transistors) has large power dissipation during pulsed operation due to transmission gates and increased transistor counts respectively. D-latch using proposed 3T NAND gates has less internal capacitance as number of transistors is reduced and shows reduced power dissipation.
Table 5.10 Simulation results for D-latch @ 90nm process technology and $V_{DD}=1V$

<table>
<thead>
<tr>
<th>D latch Circuit</th>
<th>No. of Transistors</th>
<th>Dynamic Power Dissipation (W)</th>
<th>Delay (ns)</th>
<th>$PDP_{dynamic}$ (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using 2 transmission gate & 3 inverters</td>
<td>10</td>
<td>23.34 E-06</td>
<td>0.293</td>
<td>6.83862 E-15</td>
</tr>
<tr>
<td>Using 4 transistor CMOS NAND gate</td>
<td>16</td>
<td>27.61 E-06</td>
<td>0.376</td>
<td>10.3813 E-15</td>
</tr>
<tr>
<td>Using proposed 3 transistor based NAND gate</td>
<td>12</td>
<td>20.13 E-06</td>
<td>0.129</td>
<td>2.5967 E-15</td>
</tr>
</tbody>
</table>

5.7.5 Motivation Example - C17 Benchmark Circuit

The C17 benchmark circuit is a more complicated design example with branching, multiple fan-in and fan-out. Figure 5.30 gives the gate level structure of C17 benchmark circuit. Figure 5.31 gives the transistor level implementation of C17 benchmark circuit using 3T NAND gates. The circuit C17 has the following characteristics:

- Number of gates = 6
- Number of inputs = 5
- Number of outputs = 2
Figure 5.30 C17 benchmark Circuit – gate level

Figure 5.31 C17 benchmark Circuit using 3T NAND gates
Table 5.11 gives the simulation results for C17 Benchmark circuit using HSPICE at 22nm with $V_{DD} = 0.2V$. Column 2 of Table 5.11 gives the numerical results for C17 circuit implemented using CMOS NAND gates. Column 3 of Table 5.11 gives the results for C17 circuit implemented with proposed 3T NAND gates. Power and delay values compared shows that the circuit implemented with 3T NAND gates give better result than the other circuit with optimum PDP. Figure 5.32 compares the number of transistors in C17 circuit in CMOS and 3T implementations.

Table 5.11 Simulation results for C17 benchmark circuit

<table>
<thead>
<tr>
<th>Parameters</th>
<th>3T NAND Based C17 Circuit</th>
<th>CMOS NAND Based C17 Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Power</td>
<td>35.4559 E-12 W</td>
<td>52.4860 E-12 W</td>
</tr>
<tr>
<td>Delay</td>
<td>104.4 ps</td>
<td>166.2 ps</td>
</tr>
<tr>
<td>PDP</td>
<td>3701.6 E-24 J</td>
<td>8723.2 E-24 J</td>
</tr>
</tbody>
</table>

Figure 5.32 Number of transistors for C17 benchmark circuit
5.8 SUMMARY

This chapter presented a new set of 3T based logic gates based on PTL and CMOS logic. The proposed 3T gates resulted in low power dissipation and high speed compared to the existing logic structures. According to HSPICE simulation in 22 nm CMOS process technology at room temperature, and under given conditions, the proposed 3T gates shows an improvement of 88% less power consumption on an average over conventional CMOS logic gates. The devices designed with 3T gates will make longer battery life by ensuring extremely low power consumption.

HSPICE simulations of 3T NAND gate based on PTL and CMOS logic, at 22nm showed power savings up to 32.6% and speed improvements up to 23%, for a joint optimization of 63% for the PDP. Throughout logic design, the proposed 3T NAND gate could be used to reduce the dynamic power of VLSI System on Chips (SoC) applications. This work is IPR protected and patented.

To keep the design complexity of the logic circuits designed using 3T logic gates in terms of area