LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The structure and dimensions of perchlorate anion</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Perchlorate reducing pathway and corresponding enzymes involved in each step</td>
<td>23</td>
</tr>
<tr>
<td>2.2</td>
<td>The mechanism microbial perchlorate reduction and the factors influencing the process</td>
<td>34</td>
</tr>
<tr>
<td>3.1</td>
<td>Map of India showing water sampling locations chosen for reconnaissance study during February-May 2011 and site coordinates obtained from wikimapia</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>The percentage variation of different water samples analyzed in this study</td>
<td>39</td>
</tr>
<tr>
<td>3.3</td>
<td>The variations in pH observed in drinking water (DW), ground water (GW), surface water (SW) and effluent water (EW) samples. Min- minimum, Max- maximum</td>
<td>43</td>
</tr>
<tr>
<td>3.4</td>
<td>The variations in salinity observed in drinking water (DW), ground water (GW), surface water (SW) and effluent water (EW) samples. Min- minimum, Max- maximum</td>
<td>44</td>
</tr>
<tr>
<td>3.5</td>
<td>The deviations in oxidation-reduction potential observed in drinking water (DW), ground water (GW), surface water (SW) and effluent water (EW) samples. Min- minimum, Max- maximum</td>
<td>45</td>
</tr>
<tr>
<td>3.6</td>
<td>The variations in total dissolved solids observed in drinking water (DW), ground water (GW), surface water (SW) and effluent water (EW) samples. Min- minimum, Max- maximum</td>
<td>46</td>
</tr>
<tr>
<td>3.7</td>
<td>The difference in conductivity level observed in drinking water (DW), ground water (GW), surface water (SW) and effluent water (EW) samples. Min- minimum, Max- maximum</td>
<td>47</td>
</tr>
<tr>
<td>3.8</td>
<td>The overall variations in mean perchlorate concentration observed in drinking water (DW), ground water (GW), surface water (SW) and effluent water (EW) samples from India</td>
<td>50</td>
</tr>
<tr>
<td>3.9</td>
<td>Generalized flow diagram representing the natural distribution of perchlorate present in the environment</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>Batch container (BC) used for perchlorate acclimatization of raw sludge collected from VIT waste water treatment plant, Vellore, Tamil Nadu, India</td>
<td>60</td>
</tr>
<tr>
<td>4.2</td>
<td>pH (A), ORPTestr 10 (B) and PCSTestr 35 (C) used for routine parametric studies</td>
<td>62</td>
</tr>
<tr>
<td>4.3</td>
<td>ORION ion analyzer used for perchlorate quantification in water samples: Perchlorate ion specific half-cell electrode (Orion 93-81) (arrow) and a double junction reference electrode (Orion 900200).</td>
<td>62</td>
</tr>
</tbody>
</table>
5.1 Batch Bio-reactor (BBR) setup used for perchlorate degradation and parametric optimization studies (A, B= 250 ml, 100 ml volume) 72

5.2 Schematic and physical characteristics of the bench-scale stirred tank bio-reactor setup used for the perchlorate degradation study 73

5.3 The experimental setup of bench-scale stirred tank bio-reactor system used for perchlorate degradation study 75

6.1 Effect of perchlorate on germination (%) of *L. esculentum* (A), *V. mungo* (B), *V. radiate* (C) and *Z. mays* (D). Data are presented as mean ± SD of three independent experiments with 95% confidence interval 81

6.2 Effect of perchlorate on root length of *L. esculentum* (A), *V. mungo* (B), *V. radiate* (C) and *Z. mays* (D). Data are presented as mean ± SD of three independent experiments with 95% confidence interval 84

6.3 The visible growth difference observed with perchlorate exposure in *Z. mays* (A) control seeds (0 mg L$^{-1}$ perchlorate) and, (B) Seeds treated with 100 mg L$^{-1}$ perchlorate 85

6.4 FTIR spectra of *Lycopersicum esculentum* at 10 and 100 mg L$^{-1}$ of perchlorate concentration: A– 10 mg L$^{-1}$ spectra, B– 100 mg L$^{-1}$ spectra, C– control spectra (perchlorate + KBr) 87

6.5 FTIR spectra of *Vigna mungo* at 10 and 100 mg L$^{-1}$ of perchlorate concentration: A– 10 mg L$^{-1}$ spectra, B– 100 mg L$^{-1}$ spectra, C– control spectra (perchlorate + KBr) 87

6.6 FTIR spectra of *Vigna radiate* at 10 and 100 mg L$^{-1}$ of perchlorate concentration: A– 10 mg L$^{-1}$ spectra, B– 100 mg L$^{-1}$ spectra, C– control spectra (perchlorate + KBr) 88

6.7 FTIR spectra of *Zea mays* at 10 and 100 mg L$^{-1}$ of perchlorate concentration: A– 10 mg L$^{-1}$ spectra, B– 100 mg L$^{-1}$ spectra, C– control spectra (perchlorate + KBr) 88

6.8 Profile of influent & effluent perchlorate and percentage of reduction in the batch reactor. The data represent the mean values of three independent experiments 92

6.9 The gas production profile and the sludge floc with sulphide precipitation (arrow) observed inside the batch reactor during acclimatization process 93

6.10 Profile of ORP and percentage of perchlorate reduction in the batch bio-reactor during the period of study. The data represent the mean values of three independent samples 95

6.11 Profile of pH, Salinity variation and percentage reduction observed in the perchlorate reducing reactor during the period of study. The data represent the mean values of three independent samples 96

6.12 MLSS status of the batch reactor during the period of study. The data represent the mean values of three independent experiments 97
6.13 Inorganic mineral medium with 100 mg L$^{-1}$ perchlorate and 200 mg L$^{-1}$ acetate showing growth of PRBs. A- *Proteobacterium* ARJR SMBS, B- *Pseudomonas aeruginosa* strain LMN SMBS, C- *Methylphaga* sp. LMN, D- *Bacillus* sp. ARJR, E- *Proteus* sp. LMNCRE and F- *Exiguobacterium* sp. LMNARJR.

6.14 Gram staining results obtained for strain ARJR SMBS (A), LMN (B), LMN SMBS (C), ARJR (D), LMNCRE (E) and LMNARJR (F) in this study.

6.15 Scanning electron micrograph of *Proteobacterium* ARJR SMBS (A), *Pseudomonas aeroginosa* strain LMN SMBS (B) at scale bar 1μm, *Methylphaga* sp. LMN (C) at scale bar 2 μm, *Bacillus* sp. ARJR (D), *Proteus* sp. LMNCRE (E) and *Exiguobacterium* sp. LMNARJR (F) at scale bar 1μm.

6.16 Citrate (A), Indole (B) and Manitol-Motility (C) tests results obtained for strain ARJR SMBS, LMN and LMN SMBS in the study.

6.17 MR-VP (A) and TSI (B) tests results obtained for strain ARJR SMBS, LMN and LMN SMBS in this study.

6.18 Nitrate reduction test results obtained for strain ARJR SMBS, LMN and LMN SMBS (A- before zinc addition, B- after zinc addition) in the study.

6.19 Oxidase (A) and urease (B) tests results obtained for strain ARJR SMBS, LMN and LMN SMBS in this study.

6.20 Results obtained for effect of acetate on perchlorate bio-degradation mechanism by mixed microbial consortium in batch reactor. Data are presented as mean ± standard deviation of three independent experiments with 95% confidence interval.

6.21 Results obtained for effect of nitrate on perchlorate bio-degradation mechanism by mixed microbial consortium in batch reactor. Data are presented as mean ± standard deviation of three independent experiments with 95% confidence interval.

6.22 Results obtained for effect of pH on perchlorate degradation mechanism by mixed microbial consortium in batch reactor. Data are presented as mean ± standard deviation of three independent experiments with 95% confidence interval.

6.23 Results obtained for effect of salinity on perchlorate bio-degradation mechanism by mixed microbial consortium in batch reactor. Data are presented as mean ± standard deviation of three independent experiments with 95% confidence interval.

6.24 Growth and perchlorate degradation of strain ARJR SMBS on inorganic mineral medium. PD- perchlorate degradation; GC- growth curve. Error bar represent ± one standard deviation for three replicate reactors with 95% confidence interval.

6.25 Growth curve of strain ARJR SMBS at varying perchlorate (0, 10, 30 and 50 mg L$^{-1}$) concentrations. a, b and c indicates lag phase (0-6 h), exponential phase (6-24 h) and stationary-death phase (≥ 24 h) respectively. Error bar represent the means and standard deviation of three independent reactors with $p < 0.05$.

x
6.26 Cell growth rate of strain ARJR SMBS at varying concentration of perchlorate (50, 30 and 10 mg L\(^{-1}\)) with \(\mu\) values: \(\mu_1=0.0333\) h\(^{-1}\) for 10 mg L\(^{-1}\), \(\mu_2=0.0369\) h\(^{-1}\) for 30 mg L\(^{-1}\) and \(\mu_3=0.0393\) h\(^{-1}\) for 50 mg L\(^{-1}\). CFU- Colony forming units

6.27 Dynamic cell growth rate (\(\mu\)) of *Proteobacterium* ARJR SMBS at varying initial perchlorate (\(\chi\)) concentrations (10, 30 and 50 mg L\(^{-1}\))

6.28 Growth curve of strain LMN at varying perchlorate (100, 75, 50, 25 and 0 mg L\(^{-1}\)) concentrations. a, b and c indicates lag phase (0-9 h), exponential phase (9-24 h) and stationary-death phase (\(\geq 24\) h) respectively. Error bar represent the means and standard deviation of three independent reactors with \(p < 0.05\)

6.29 Cell growth rate of strain LMN at varying concentration of perchlorate (100, 75, 50, 25 and 0 mg L\(^{-1}\)) with \(\mu\) values \(\mu_1=0.0714\) h\(^{-1}\) for 100 mg L\(^{-1}\), \(\mu_2=0.0838\) h\(^{-1}\) for 75 mg L\(^{-1}\), \(\mu_3=0.0895\) h\(^{-1}\) for 50 mg L\(^{-1}\) and \(\mu_4=0.0924\) h\(^{-1}\) for 25 mg L\(^{-1}\)

6.30 Dynamic cell growth rate (\(\mu\)) of *Methylphaga* sp. LMN at varying initial perchlorate (\(\chi\)) concentrations (100, 75, 50 and 25 mg L\(^{-1}\))

6.31 Growth and perchlorate degradation profile of *Pseudomonas auerogenosa* LMN SMBS on inorganic mineral medium. PD- perchlorate degradation; GC- growth curve. Error bar represent the means and standard deviation of three independent reactors with \(p < 0.05\)

6.32 Growth curve of strain LMN SMBS at varying perchlorate (100, 75, 50, 25 and 0 mg L\(^{-1}\)) concentrations. a, b and c indicates lag phase (0-3 h), exponential phase (3-12 h) and stationary-death phase (\(\geq 12\) h) respectively. Error bar represent the means and standard deviation of three independent reactors with \(p < 0.05\)

6.33 Cell growth rate of strain LMN SMBS at varying concentration of perchlorate (100, 75, 50 and 25 mg L\(^{-1}\)) with \(\mu\) values \(\mu_1=0.0333\) h\(^{-1}\) for 100 mg L\(^{-1}\), \(\mu_2=0.0667\) h\(^{-1}\) for 75 mg L\(^{-1}\), \(\mu_3=0.1433\) h\(^{-1}\) for 50 mg L\(^{-1}\) and \(\mu_4=0.1567\) h\(^{-1}\) for 25 mg L\(^{-1}\) obtained

6.34 Dynamic cell growth rate (\(\mu\)) of *Pseudomonas auerogenosa* LMN SMBS at varying initial perchlorate (\(\chi\)) concentrations (100, 75, 50 and 25 mg L\(^{-1}\))

6.35 Growth curve of strain ARJR at varying perchlorate (100, 75, 50, 25 and 0 mg L\(^{-1}\)) concentrations. a, b and c indicates lag phase (0-3 h), exponential phase (3-21 h) and stationary-death phase (\(\geq 21\) h) respectively. Error bar represent the means and standard deviation of three independent reactors with \(p < 0.05\)

6.36 Cell growth rate of strain ARJR at varying concentration of perchlorate (100, 75, 50 and 25 mg L\(^{-1}\)) with \(\mu\) values \(\mu_1=0.0103\) h\(^{-1}\) for 100 mg L\(^{-1}\), \(\mu_2=0.0405\) h\(^{-1}\) for 75 mg L\(^{-1}\), \(\mu_3=0.071\) h\(^{-1}\) for 50 mg L\(^{-1}\) and \(\mu_4=0.0873\) h\(^{-1}\) for 25 mg L\(^{-1}\) obtained
Dynamic cell growth rate (μ) of *Bacillus* sp. ARJR at varying initial perchlorate (x) concentrations (100, 75, 50 and 25 mg L$^{-1}$)

Growth curve of strain LMNCRE at varying perchlorate (100, 75, 50, 25 and 0 mg L$^{-1}$) concentrations. a, b and c indicates lag phase lag phase (0-6 h), exponential phase (6-21 h) and stationary-death phase (≥ 21 h) respectively. Error bar represent the means and standard deviation of three independent reactors with $p < 0.05$

Cell growth rate of strain LMNCRE at varying concentration of perchlorate (100, 75, 50 and 25 mg L$^{-1}$) with μ values $\mu_f=0.0505$ h$^{-1}$ for 100 mg L$^{-1}$, $\mu_f=0.059$ h$^{-1}$ for 75 mg L$^{-1}$, $\mu_f=0.0914$ h$^{-1}$ for 50 mg L$^{-1}$ and $\mu_f=0.1352$ h$^{-1}$ for 25 mg L$^{-1}$ obtained

Dynamic cell growth rate (μ) of *Proteus* sp. LMNCRE at varying initial perchlorate (x) concentrations (100, 75, 50 and 25 mg L$^{-1}$)

Growth curve of strain LMNARJR at varying perchlorate (100, 75, 50, 25 and 0 mg L$^{-1}$) concentrations. a, b and c indicates lag phase (0-6 h), exponential phase (6-24 h) and stationary-death phase (≥ 24 h) respectively. Error bar represent the means and standard deviation of three independent reactors with $p < 0.05$

Cell growth rate of strain LMNARJR at varying concentration of perchlorate (100, 75, 50 and 25 mg L$^{-1}$) with μ values $\mu_f=0.0071$ h$^{-1}$ for 100 mg L$^{-1}$, $\mu_f=0.0238$ h$^{-1}$ for 75 mg L$^{-1}$, $\mu_f=0.0369$ h$^{-1}$ for 50 mg L$^{-1}$ and $\mu_f=0.0607$ h$^{-1}$ for 25 mg L$^{-1}$ obtained

Dynamic cell growth rate (μ) of *Exiguobacterium* sp. LMNARJR at varying initial perchlorate (x) concentrations (100, 75, 50 and 25 mg L$^{-1}$)

Dry weight of cell measurement of strain ARJR SMBS at varying perchlorate (0, 10, 30 and 50 mg L$^{-1}$) concentrations. Error bar represent ± one standard deviation for three replicate reactors with 95% confidence interval

Dry weight of cell measurement of strain LMN at varying perchlorate (0, 25, 50, 75 and 100 mg L$^{-1}$) concentrations. Error bar represent ± one standard deviation for three replicate reactors with 95% confidence interval

Dry weight of cell measurement of strain LMN SMBS at varying perchlorate (0, 25, 50, 75 and 100 mg L$^{-1}$) concentrations. Error bar represent ± one standard deviation for three replicate reactors with 95 % confidence interval

The visible colonies obtained at 0th h (A) and 24th h incubation (B) of *Proteobacterium* ARJR SMBS after spread plating on nutrient agar medium

Perchlorate degradation curve of strain ARJR SMBS at different initial perchlorate (50, 30 and 10 mg L$^{-1}$) concentartions. Error bar represent the means and standard deviation of three independent reactors with 95% confidence interval
6.49 Perchlorate degradation tolerance limit of strain ARJR SMBS at different initial perchlorate (100, 200, 400, 800 and 1000 mg L\(^{-1}\)) concentrations. Error bar represent the means and standard deviation of triplicates with 95% confidence interval.

6.50 Perchlorate degradation curve of strain LMN at different initial perchlorate (100, 75, 50 and 25 mg L\(^{-1}\)) concentrations. Error bar represent the means and standard deviation of three independent reactors with 95% confidence interval.

6.51 Perchlorate degradation curve of strain LMN SMBS at different initial perchlorate (100, 75, 50 and 25 mg L\(^{-1}\)) concentrations. Error bar represent the means and standard deviation of three independent reactors with 95% confidence interval.

6.52 Perchlorate degradation curve of strain ARJR at different initial perchlorate (100, 75, 50 and 25 mg L\(^{-1}\)) concentrations. Error bar represent the means and standard deviation of three independent reactors with 95% confidence interval.

6.53 Perchlorate degradation curve of strain LMNCRE at different initial perchlorate (100, 75, 50 and 25 mg L\(^{-1}\)) concentrations. Error bar represent the means and standard deviation of three independent reactors with 95% confidence interval.

6.54 Perchlorate degradation curve of strain LMNARJR at different initial perchlorate (100, 75, 50 and 25 mg L\(^{-1}\)) concentrations. Error bar represent the means and standard deviation of three independent reactors with 95% confidence interval.

6.55 Concentration of perchlorate in synthetic effluent during startup of STBR system (SEP, synthetic effluent perchlorate)

6.56 Concentration of perchlorate in real effluent during startup of STBR system (REP, real effluent perchlorate)

6.57 Residual perchlorate concentration (mg L\(^{-1}\)) in synthetic effluent for different initial perchlorate levels 30, 60, 90, 120 and 150 mg L\(^{-1}\) in STBR. Error bar represent the means and standard deviation of three independent sample analysis with 95% confidence interval.

6.58 Residual perchlorate concentration (mg L\(^{-1}\)) in real effluent for different initial perchlorate levels 30, 60 and 88.93 mg L\(^{-1}\) in the STBR. Error bar represent the means and standard deviation of three independent sample analysis with 95% confidence interval.

6.59 Residual perchlorate and chloride accumulation in the STBR at 90 mg L\(^{-1}\) of synthetic effluent and 88.93 mg L\(^{-1}\) of real effluent (REPC, real effluent perchlorate; SEPC, synthetic effluent perchlorate; REC, real effluent chloride; SEC, synthetic effluent chloride). Error bar represent the means and standard deviation of three independent sample analysis with 95% confidence interval.

6.60 Biomass of the STBR system at 90 mg L\(^{-1}\) perchlorate containing synthetic effluent and 88.93 mg L\(^{-1}\) perchlorate containing real effluent during the period of study.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.61</td>
<td>The ratio of the mass of chloride produced per unit time divided by the mass of perchlorate degraded per unit time against reaction time (--- 0.5 for real effluent–mass balance, RE–MB; —— 0.4 for synthetic effluent–mass balance, SE–MB)</td>
</tr>
<tr>
<td>6.62</td>
<td>Residual perchlorate and redox potential of STBR at 90 mg L(^{-1}) of synthetic effluent and 88.93 mg L(^{-1}) of real effluent (REPC, real effluent perchlorate; SEPC, synthetic effluent perchlorate; REORP, real effluent oxidation reduction potential; SEORP, synthetic effluent oxidation reduction potential)</td>
</tr>
<tr>
<td>6.63</td>
<td>The specific growth rate and half-saturation constant for synthetic effluent treatment at 90 mg L(^{-1}) perchlorate in STBR</td>
</tr>
<tr>
<td>6.64</td>
<td>The specific growth rate and half-saturation constant for real effluent treatment at 88.93 mg L(^{-1}) perchlorate in STBR</td>
</tr>
</tbody>
</table>