CHAPTER IV
ANALYSIS AND INTERPRETATION OF DATA

4.1 Introduction

4.2 Result from Urban Sample
4.2.1 Descriptive Statistics
4.2.2 Correlation Analysis
4.2.3 Gender-wise Comparison

4.3 Result from Rural Sample
4.3.1 Descriptive Statistics
4.3.2 Correlation Analysis
4.3.3 Gender-wise Comparison

4.4 Results from Combined Urban and Rural Sample
4.4.1 Gender-wise and Locality-wise Comparison

4.5 Interpretation of Results
4.5.1 Correlation Study of Academic Achievement and Adjustment Factors
4.5.2 Gender Difference on Academic Achievement
4.5.3 Gender and Locality Differences on Academic Achievement

4.6 Summary
CHAPTER IV

ANALYSIS AND INTERPRETATION OF DATA

4.1 Introduction

The present chapter reports the statistical analysis of the data and interpretation. It includes the findings and observations based on the data collected with the help of the questionnaire. The data was collected and tabulated as per the explanation given in the previous chapter of methodology. The obtained data was sorted out and a computer spreadsheet of the entire data was created. The scoring was done later which was followed by the data analysis using various relevant statistical tools. An inferential data analysis was done to infer the characteristics of the selected samples from the population. The results for t-test were obtained by using statistical software ‘SYSTAT’. The results of the entire study are presented in this chapter.

The results obtained are categorized into three parts. Firstly, the results obtained for the urban sample, secondly, the results for the rural sample followed by the results for the entire combined data. The hypotheses stated in this chapter were tested and statistically analyzed.

4.2 Results from Urban Sample

As stated in the previous chapter, the urban sample comprises of 532 male students and 392 female students (N=924). The results of this sample are as follows:

4.2.1 Descriptive Statistics

The given table IV-1 explains the descriptive statistics for the respective variables. The table includes the acquired score of AA i.e. AS and AF.

The descriptive statistics consists of the Mean, Standard Deviation (SD) and Variance of all the variables.
Table IV-1: Means and SDs of AA and AF of Urban students (N=924).

<table>
<thead>
<tr>
<th></th>
<th>H/FA</th>
<th>SA</th>
<th>P/EA</th>
<th>EA</th>
<th>HA</th>
<th>AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>21.53</td>
<td>27.84</td>
<td>66.80</td>
<td>35.46</td>
<td>12.79</td>
<td>65.41</td>
</tr>
<tr>
<td>Variance</td>
<td>43.14</td>
<td>59.39</td>
<td>206.07</td>
<td>90.83</td>
<td>26.13</td>
<td>274.65</td>
</tr>
<tr>
<td>S.D</td>
<td>6.57</td>
<td>7.71</td>
<td>14.36</td>
<td>9.53</td>
<td>5.11</td>
<td>16.57</td>
</tr>
</tbody>
</table>

From the above table IV-1 it is seen that P/EA factor has more average scores than the other AF mentioned.

4.2.2 Correlation Analysis

In order to measure the relationship between AA and AF, Pearson’s correlation formula is used. The results of this Correlation analysis are shown in the given table IV-2.

Objective 1:
To investigate the correlation between AA and AF among urban students.

Here it is assumed that

\[ H_0: r = 0 \text{ Vs } r \neq 0. \]

Hypothesis 1:
There is no significant correlation between AA and AF of urban students.

To know the correlation between AA and H/FA, SA, P/EA, EA & HA, the researcher made the following sub-hypotheses in relation to the objective mentioned.
Table IV-2: Correlation between AA and AF of Urban students (N=924).

<table>
<thead>
<tr>
<th></th>
<th>H/FA</th>
<th>SA</th>
<th>P/EA</th>
<th>EA</th>
<th>HA</th>
<th>A.A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H/FA</td>
<td>1</td>
<td>0.449(*)</td>
<td>0.582(*)</td>
<td>0.51(*)</td>
<td>0.491(*)</td>
<td>-0.225(*)</td>
</tr>
<tr>
<td>SA</td>
<td>0.449(*)</td>
<td>1</td>
<td>0.561(*)</td>
<td>0.58(*)</td>
<td>0.451(*)</td>
<td>-0.082(**)</td>
</tr>
<tr>
<td>P/EA</td>
<td>0.582(*)</td>
<td>0.561(*)</td>
<td>1</td>
<td>0.612(*)</td>
<td>0.533(*)</td>
<td>-0.226(*)</td>
</tr>
<tr>
<td>EA</td>
<td>0.51(*)</td>
<td>0.58(*)</td>
<td>0.612(*)</td>
<td>1</td>
<td>0.501(*)</td>
<td>-0.179(*)</td>
</tr>
<tr>
<td>HA</td>
<td>0.491(*)</td>
<td>0.451(*)</td>
<td>0.533(*)</td>
<td>0.501(*)</td>
<td>1</td>
<td>-0.268(*)</td>
</tr>
<tr>
<td>A.A.</td>
<td>-0.225(*)</td>
<td>-0.082(**)</td>
<td>-0.226(*)</td>
<td>-0.179(*)</td>
<td>-0.268(*)</td>
<td>1</td>
</tr>
</tbody>
</table>

- *= very strong evidence against null hypothesis (p < 0.01)
- **= moderate evidence against null hypothesis (p < 0.05)

Sub-hypotheses:

1.1 There is no significant correlation between AA and H/FA of urban students.

The correlation between the total scores of AA and H/FA was r = -0.225 (p < 0.01). This depicts that there is low negative correlation between AA and H/FA. Therefore the hypothesis stated above is not accepted.

1.2 There is no significant correlation between AA and SA of urban students.

The correlation between the total scores of AA and SA was r = -0.082 (p < 0.05). This value shows that there is very low negative correlation between AA and SA. Therefore the above-stated hypothesis is not accepted.

1.3 There is no significant correlation between AA and P/EA of urban students.

The correlation between the total scores of AA and P/EA was r = -0.226 (p < 0.01). This depicts that there is low negative correlation between AA and P/EA. Therefore the hypothesis given above is not accepted.
1.4 *There is no significant correlation between AA and EA of urban students.*

The correlation between the total scores of AA and EA was $r = -0.179$ (p < 0.01). This depicts that there is very low negative correlation between AA and EA. Therefore the hypothesis stated above is not accepted.

1.5 *There is no significant correlation between AA and HA of urban students.*

The correlation between the total scores of AA and HA was $r = -0.268$ (p < 0.01). This states that there is negative correlation between AA and HA. Therefore the hypothesis given above is not accepted.

Additionally it can also be noted that EA and P/EA are highly and positively correlated with each other ($r = 0.612$). All AF are positively correlated with each other. As there is negative correlation between AA and AF, the hypothesis (1) stating that “*There is no significant correlation between AA and AF of urban students*” is not accepted. Hence, correlation status of AA and AF of urban students can be noted.

4.2.3 Gender-wise Comparison

The gender-wise comparison of the male and the female urban students on AA were noted from the results given in the table IV-3 pertaining to the respective objective. The given table explains the differences between the male and female urban students with regard to the mean and the standard deviation scores.

In order to compare the difference between male and female urban students, t-test was conducted. Following are the results of t-test statistics comparing urban boys and girls on AA.
Objective 3: “To compare AA across gender of urban students”.

Hypothesis 3: “There is no significant gender difference on AA among urban students”.

Table IV-3: t- test statistics comparing AA of urban boys and girls (N=924).

<table>
<thead>
<tr>
<th>Gender</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>532</td>
<td>64.7</td>
<td>16.7</td>
</tr>
<tr>
<td>Female</td>
<td>392</td>
<td>66.3</td>
<td>16.4</td>
</tr>
</tbody>
</table>

$t –value = 1.42$

t- table = 1.962755

$p-value = 0.157$

Calculated t-value < tabulated t-value so Ho is accepted. i.e. there is no significant gender difference on AA among urban students.

From the results it is clearly seen that:
- The average AA of female students is as good as the male students.

Thus from the results it can be inferred that hypothesis (3) stating “There is no significant gender difference on AA among urban students” is accepted.
Graph IV–1: Mean score of AF for Urban students.

<table>
<thead>
<tr>
<th>AF</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>H/FA</td>
<td>21.83</td>
<td>21.13</td>
</tr>
<tr>
<td>SA</td>
<td>28.53</td>
<td>26.91</td>
</tr>
<tr>
<td>P/EA</td>
<td>66.54</td>
<td>67.17</td>
</tr>
<tr>
<td>EA</td>
<td>36.36</td>
<td>33.70</td>
</tr>
<tr>
<td>HA</td>
<td>13.22</td>
<td>12.21</td>
</tr>
</tbody>
</table>

From the above graph IV-1 it is clear that factor P/EA has more average score.
4.3 Results from Rural Sample.

As per the explanation given in the previous chapter, the rural sample comprises of 118 male students and 77 female students (N=195). The results of this sample are as follows:

4.3.1 Descriptive Statistics

In the following Table IV-4, the descriptive statistics for all the variables is given. The table deals with the total score of AF and AA. The descriptive statistics includes the Means, SD and Variance of each variable in this study.

<table>
<thead>
<tr>
<th></th>
<th>H/FA</th>
<th>SA</th>
<th>P/EA</th>
<th>EA</th>
<th>HA</th>
<th>AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.M</td>
<td>18.94</td>
<td>27.11</td>
<td>62.29</td>
<td>34.44</td>
<td>11.61</td>
<td>70.43</td>
</tr>
<tr>
<td>Variance</td>
<td>65.44</td>
<td>74.80</td>
<td>281.52</td>
<td>125.00</td>
<td>26.71</td>
<td>148.72</td>
</tr>
<tr>
<td>S.D</td>
<td>08.09</td>
<td>08.65</td>
<td>16.78</td>
<td>11.18</td>
<td>05.17</td>
<td>12.20</td>
</tr>
</tbody>
</table>

From the above IV-4 it is seen that P/EA factor has more average scores than the other AF mentioned.

4.3.2 Correlation Analysis

In order to measure the relationship between AF and AA, Pearson’s Correlation formula is used. The results of this correlation analysis are mentioned in the given table IV-5 along with its respective objective and hypotheses.
Objective 2:

To investigate the correlation between AA and AF among rural students.

Here it is assumed that

\[ H_0: \rho = 0 \text{ vs } H_1: \rho \neq 0 \]

Hypothesis 2:

There is no significant correlation between AA and AF of rural students.

To know the correlation between AA and H/FA, SA, P/EA, EA & HA, the researcher made the following sub-hypotheses in relation to the objective stated.

Table IV-5: Correlation between AA and AF of Rural students (N=195).

<table>
<thead>
<tr>
<th></th>
<th>H/FA</th>
<th>SA</th>
<th>P/EA</th>
<th>EA</th>
<th>HA</th>
<th>A.A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H/FA</td>
<td>1</td>
<td>0.435(*)</td>
<td>0.703(*)</td>
<td>0.564(*)</td>
<td>0.525(*)</td>
<td>-164(**)</td>
</tr>
<tr>
<td>SA</td>
<td>0.435(*)</td>
<td>1</td>
<td>0.635(*)</td>
<td>0.619(*)</td>
<td>0.417(*)</td>
<td>-0.042(***)</td>
</tr>
<tr>
<td>P/EA</td>
<td>0.703(*)</td>
<td>0.635(*)</td>
<td>1</td>
<td>0.703(*)</td>
<td>0.523(*)</td>
<td>-0.143(**)</td>
</tr>
<tr>
<td>EA</td>
<td>0.564(*)</td>
<td>0.619(*)</td>
<td>0.703(*)</td>
<td>1</td>
<td>0.41(*)</td>
<td>-0.282(*)</td>
</tr>
<tr>
<td>HA</td>
<td>0.525(*)</td>
<td>0.417(*)</td>
<td>0.523(*)</td>
<td>0.41(*)</td>
<td>1</td>
<td>-0.124(***)</td>
</tr>
<tr>
<td>A.A.</td>
<td>-0.164(**)</td>
<td>-0.042(***)</td>
<td>-0.143(**)</td>
<td>-0.282(*)</td>
<td>-0.124(***)</td>
<td>1</td>
</tr>
</tbody>
</table>

* = very strong evidence against null hypothesis (p < 0.01)

** = moderate evidence against null hypothesis (p < 0.05)

*** = p-value > 0.05

Sub-hypotheses:

2.1. There is no significant correlation between AA and H/FA of rural students.

The correlation between the total scores of AA and H/FA was \( r = -0.164 \) (p < 0.05). This depicts that there is very low negative correlation between AA and H/FA. Therefore the hypothesis stated above is not accepted.
2.2. There is no significant correlation between AA and SA of rural students.

The correlation between the total scores of AA and SA was $r = -0.042$ ($p > 0.05$). Since the value is very negligible it shows that there is no correlation between AA and SA. Therefore the hypothesis stated above is accepted.

2.3. There is no significant correlation between AA and P/EA of rural students.

The correlation between the total scores of AA and P/EA was $r = -0.143$ ($p < 0.05$). This depicts that there is very low negative correlation between AA and P/EA. Therefore the above-stated hypothesis is not accepted.

2.4. There is no significant correlation between AA and EA of rural students.

The correlation between the total scores of AA and EA was $r = -0.282$ ($p < 0.01$). This depicts that there is low negative correlation between AA and EA. Therefore the hypothesis stated above is not accepted.

2.5. There is no significant correlation between AA and HA of rural students.

The correlation between the total scores of AA and HA was $r = -0.124$ ($p < 0.05$). This depicts that there is very low negative correlation between AA and HA. Therefore the above-stated hypothesis is not accepted.

Additionally, EA with P/EA and H/FA with P/EA factors are highly and positively correlated with each other ($r = 0.703$). Besides, SA is highly and positively correlated with P/EA ($r = 0.635$) and with EA ($r=0.619$) respectively. All AF are positively correlated with each other.

EA is more negatively correlated with AA. As there is negative correlation between AA and AF, the hypothesis (2) stating that “there is no significant correlation between AA and AF of rural students” was not accepted. Hence, correlation status of AA and AF of rural students can be noted.

4.3.3 Gender-wise Comparison

In order to compare the difference between male and female rural students, t-test was conducted. Following are the results of t-test statistics comparing rural boys and girls on AA.
Objective 4: “To compare AA across gender of rural students”.

Hypothesis 4: “There is no significant gender difference on AA among rural students”.

Table IV-6: t-test statistics comparing AA of rural boys and girls (N=195).

<table>
<thead>
<tr>
<th>Gender</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>118</td>
<td>69</td>
<td>12.3</td>
</tr>
<tr>
<td>Female</td>
<td>77</td>
<td>72.6</td>
<td>11.9</td>
</tr>
</tbody>
</table>

$t$-value $= 2$

$t$-table $= 1.962755$

$p$-value $= 0.047$

Calculated $t$-value $>$ tabulated $t$-value so $H_0$ is rejected.

i.e. there is significant gender difference on AA among rural students.

From the results it is clearly seen that:

- Females have higher average scores than the males in AA factor.

Thus from the results it can be inferred that hypothesis (4) stating “There is no significant gender difference on AA among rural students” is not accepted.
Graph IV-2: Mean score of AF for Rural students.

<table>
<thead>
<tr>
<th>AF</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>H/FA</td>
<td>113.67</td>
<td>19.27</td>
</tr>
<tr>
<td>SA</td>
<td>56.05</td>
<td>26.45</td>
</tr>
<tr>
<td>P/EA</td>
<td>219.36</td>
<td>66.42</td>
</tr>
<tr>
<td>EA</td>
<td>135.27</td>
<td>32.96</td>
</tr>
<tr>
<td>HA</td>
<td>340.50</td>
<td>11.32</td>
</tr>
</tbody>
</table>

From above graph IV-2 it is depicted that, average score of HA is more for male students than female students.
4.4  Results from Combined Urban and Rural Sample.

The analysis of the entire data is described in this section. The study comprised of 924 students from the urban area and 195 students from the rural area. The entire data of 1119 students was analyzed to measure the differences with regard to localities and gender. This was done to measure the locality differences if any prevailing between the urban and the rural students on AA and selected AF.


In order to compare the difference between gender and localities of rural students, t-test was conducted. Following are the results of t-test statistics comparing rural boys and girls on AA.

Objective 5: “To compare AA across gender and localities of urban and rural students”.

Hypothesis 5: “There is no significant difference on AA between urban and rural students”.

Table IV-7: t-test statistics comparing AA of urban and rural students (N=1119).

<table>
<thead>
<tr>
<th>Locality</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>924</td>
<td>65.4</td>
<td>16.6</td>
</tr>
<tr>
<td>Rural</td>
<td>195</td>
<td>70</td>
<td>12.2</td>
</tr>
</tbody>
</table>

t-value = 4.88

Calculated t-value > tabulated t-value so Ho is rejected.

i.e. there is significant difference on AA between urban and rural students.

From the results it is clearly depicted that:

- AA of rural students (male and female) is higher than urban students (male and female).

Thus from the results it can be noted that hypothesis (5) stating “There is no significant difference on AA between urban and rural students” is not accepted.
Graph IV-3: Mean score of AF for Urban and Rural students

<table>
<thead>
<tr>
<th>AF</th>
<th>Urban</th>
<th>Rural</th>
</tr>
</thead>
<tbody>
<tr>
<td>H/FA</td>
<td>21.53</td>
<td>18.94</td>
</tr>
<tr>
<td>SA</td>
<td>27.84</td>
<td>27.11</td>
</tr>
<tr>
<td>P/EA</td>
<td>66.80</td>
<td>62.29</td>
</tr>
<tr>
<td>EA</td>
<td>35.46</td>
<td>34.44</td>
</tr>
<tr>
<td>HA</td>
<td>12.79</td>
<td>11.61</td>
</tr>
</tbody>
</table>

From above graph IV-3 it is clear that factor P/EA has more average score in Urban and Rural area.
From above graph IV-4 it is clear that AA of female students (urban and rural) is more than the male (urban and rural) students.
Graph IV-5: Mean Score of AF for Urban and Rural students

<table>
<thead>
<tr>
<th>AF</th>
<th>H/FA</th>
<th>SA</th>
<th>P/EA</th>
<th>EA</th>
<th>HA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>21.53247</td>
<td>27.84199</td>
<td>66.80411</td>
<td>35.4632</td>
<td>12.79329</td>
</tr>
<tr>
<td>Rural</td>
<td>18.93846</td>
<td>27.10769</td>
<td>62.28718</td>
<td>34.4359</td>
<td>11.60513</td>
</tr>
</tbody>
</table>

From above graph IV-5 it is clear that factor P/EA has more average score in Urban and Rural students.
Figure IV-1: Relationship of Academic Achievement and Adjustment Factors.
4.5 Interpretation of Results

The aim of the present study was to understand the correlation between AA and AF (home, social, personal/emotional, educational and health) among urban and rural adolescent students. It also aimed to compare and analyze the levels of AA and AF across gender and locality. This section comprises of three aspects that are correlation study of AA and AF, gender difference on AA and gender and locality differences on AA. It deals with the interpretation and discussion obtained from the analyzed data pertaining to the hypotheses mentioned. On the basis of the results, following interpretations were made:

4.5.1 Correlation Study of AA and AF.

In the present study correlation between AA and AF will be discussed. The results of the correlation analysis are given in the tables IV-2 and IV-5 respectively using Pearson’s correlation formula. Taking in view the hypotheses 1 and 2 and their sub-hypotheses mentioned in this chapter the respective alternative hypotheses were stated in due consideration of the interpretations made.

I. Urban sample.
- There is significant negative correlation between AA & AF.
- There is significant negative correlation between AA & H/FA.
- There is significant negative correlation between AA & SA.
- There is significant negative correlation between AA & P/EA.
- There is significant negative correlation between AA & EA.
- There is significant negative correlation between AA & HA.

II. Rural Sample.
- There is significant negative correlation between AA & AF.
- There is significant negative correlation between AA & H/FA.
- There is no significant correlation between AA & SA.
- There is significant negative correlation between AA & P/EA.
- There is significant negative correlation between AA & EA.
- There is significant negative correlation between AA & HA.
The interpretation for the above stated null and alternative hypotheses is: Adolescents with family conflicts and family problems like death of one parent, divorce, separation or desertion may yet fare well in his AA and vice-versa. A socially adjusted person may not achieve good AS and vice-versa. A socially adjusted person may or may not achieve good AS and a socially rejected person may or may not achieve good AS. Adolescents who are emotionally distressed and face many personal problems like personal conflicts, frustrations may yet fair well in his academic performance and vice-versa. Students facing problems regarding adjustment with their teachers, peers, curriculum and school offerings may still score well in their examinations and vice-versa. Insufficient knowledge about sex and drugs may result in poor health adjustment causing mental and physical ill-health. An adolescent who has good health may not achieve good AS and vice-versa. A healthy person may or may not achieve good AS, and a person with ill-health may or may not achieve good AS.

Additionally we can also state that EA and P/EA factors are highly correlated with each other among urban students. Results of the present study showing negative correlation between AF and AA mean that high adjustment is related to low AA. It means that students who adjust well at home, school and in society may not fair well in his/her academic scores.

If an individual sees her/himself as being good in one area of adjustment, then he/she generalizes this perception to other areas of adjustment as well. For example, if an urban student perceives him/herself to be good in H/FA, it is very likely that he/she thinks that he/she is good in other areas of adjustments as well, i.e. SA, P/EA, EA and HA.

4.5.2 Gender Difference on AA

i. Urban sample:
- There is no significant gender difference on AA among urban students.
  From the results it is depicted that:
- The scores of female students in AA are as good as the male students.

ii. Rural sample:
- There is significant gender difference on AA among rural students.
  From the results it is clearly seen that:
  The scores of AA of female students are higher than the male students.
4.5.3 Gender and Locality differences on AA

i. Urban and Rural sample:

- There is significant difference on AA between urban and rural students.

  From the results it is depicted that:

1. The scores of AA of rural (male and female) students are higher than urban (male and female) students.

2. The scores of AA of female (urban and rural) students are as good as the male (urban and rural) students.

The following studies support the above mentioned findings:

  Padhi & Dash (1994) found that parental attitudes were related to self checked and peer checked competence.

  Yet another study done by Khokhar & Thakur (1993) stated that students of loving and permissive parents were found different in feelings and acceptance and rejection.

  Pathak (1972) discovered that differences in adjustment (home, social, emotional and health) were found to be related to the sociometric status of pre-adolescents, i.e. the peer choices in friendship. Popularity, rejection and isolation, in sociometric terms, were significant factors from each other in adjustment, as would be expected, but not popular in isolate girls.

  A study done by Reddy (1969) on family income and adolescent adjustment proved that the upper middle income group was least maladjusted group. Feelings of inferiority, pessimistic attitudes and impaired relations with parents characterized the problems of low income groups. Middle income group boys had poor heterosexual relations.

  Desai (1969) studied on the maladjusted adolescent and said that adolescence is a period in which the individual is most likely to be maladjusted if his basic needs are not satisfied. Causes of maladjustment have been discussed in the light of needs such as basic needs: need to feel secure, need for new experiences, need to achieve, need to be independent, social needs, need to be loved, need to be recognized and need for companionship.

  The major indications of problems in adolescents were inferiority feeling, poor self-image and dislike for home (Reddy, 1971). The study also showed a decline in
adjustment problems with maturity. The rural/urban residence did not seem to significantly affect adjustment.

Pandey (1979 cited from Butch, 1986) finds among students of higher secondary stage, the rural group to be better in emotional, health and school adjustment whereas the urban group is better in aesthetic adjustment.

Mathur (1970) found that home and health problems contributed the main causes of frustration in adolescents and the incidence of frustration was higher in adolescents belonging to the lower class.

Sabberwal (1967) studied the emotional tension and its effect on student performance in school examinations of girls of IX class and found that there was negative correlation between tension and performance at the examination. The negative correlation between tension and performance at the examination showed that high tensions produced low marks and absence of tensions result in high marks.

Barua and Barua (1999) found adolescence (198 between ages 15 – 16 years) of working mothers to be better adjusted on various educational and social – emotional dimensions than the adolescents of non- working mothers.

Yet another study done by Rawat (1995) showed that parental absence affected adolescent students’ comprehension, study habits and personality adjustment.

A study by Kakkar (1967) cited from The Indian Council of Social Science Research (ICSSR, 1972) emphasized the role of school in causing anxiety and problems of adjustment among adolescents.

Pathak (1971 cited from Butch, 1986) reports that the popular students in a sociometric scale are significantly superior in home adjustment, social adjustment, emotional adjustment, school adjustment and health adjustment. In conclusion, it is reported that sociometric status is significantly related to various ways of adjustment.

Pillai and Usha (1994) established that parents’ sex bias affects achievement of girls.

In case of children from rural areas, their capacity for retention, concentration and intellectual abilities were found positively related to some personal and socio-economic variables such as age, class, physical health and status (Mayuri & Bilquis, 1999).

Ahluwalia & Sidhu in 1969 dealt with a study of personal problems of some adolescent girls of class IX and their effect on AA and claimed that they had maximum
number of problems in the area of health. Their opinions indicated that the personal problems affect their academic performance effectively. Emotional problems appeared to affect mostly the AA.

Singh and Verma (1995) found adjustment, interests and socio–economic status affecting the AA of female students of class X. Intelligence and academic aspiration were also found to be related to scholastic success; less intelligent rural students were found to have less academic aspirations than their urban counterparts.

Ved Prakash (1994) investigated positive relationship between school factors like school climate and educational aspiration, school environment and school adjustment and social values among male adolescent students.

An interesting study done by Bhojak & Mehta in 1969 on what problems do adolescents face on boys and girls of class IX showed that boys face problems in self-centered concern and relationship between boys and girls, whereas girls face problems in school and family and both face problems in money, work, future and health & physical development.

Sujatha Rani (1981) reports that adolescent boys of high income status are better adjusted at home than girls. School adjustment seems to become less with the age of 16. Boys are reported to be having better adjustment with the community than girls; community adjustment is not influenced by age, religion and economic status.

A study conducted by Kakkar (1964) on adjustment problems of adolescents revealed that girls accepted parental control but boys grumbled about it. Boys were more aggressive and curious about the new knowledge while girls were shy, withdrawn and nervous. Adolescents were deeply concerned about their health.

According to a study conducted by Talukdar & Talukdar (2008) on adjustment problems of adolescents, the overall adjustment of male students was found to be better than female students. Social adjustment was average in both the groups. The results also revealed unsatisfactory adjustment of female adolescents in different areas under study. Emotional adjustment of both the groups was unsatisfactory. Thus many factors identified in the study were thought to be responsible for adjustment problems in the adolescents like overprotection, lack of love and affection at home, lack of interest in studies, day dreaming, sleep disturbance, etc.
In yet another study by Parmeswaran (1957) on social adjustment of a group of early adolescent boys, urban boys showed significantly greater maladjustment than rural boys in some areas of adjustment.

Shanmugam (1953) conducted a study of emotional instability in adolescence on 275 boys from low socio-economic families and concluded that at the age of fifteen emotional instability reached its peak.

Findings of the studies from Sixth Survey of Educational Research (1993-2000) with adolescent females (N = 260) showed the influence of perceived parental acceptance on their mental health (Jain, 1998). The study revealed less accepted girls to be more emotionally unstable, timid, apprehensive and tense.

Studies have shown loneliness, prolonged deprivation and feelings of inferiority in adolescents affecting their mental health. Upamanyu and Upamanyu (1995) found adolescents of grades X and XI (508 males and 532 females) manifesting higher levels of loneliness than those of other age groups.

A significant relationship was also found in adolescent girls on feelings of inferiority with emotional, social, educational and general adjustments (Gupta, 1996).

Natraj (1968 cited from ICSSR 1972) observed adolescent girls to be unsatisfactorily adjusted to the stress and strain of environment.

Another study conducted by Kakkar in 1967 on the relationship among certain adolescent adjustment stated that the adjustment problems of adolescent boys did not differ significantly from that of the girls. It was also revealed that the adolescent confronted the maximum number of problems in the school.

Bhagia (1969) did a study on problem of school-adjustment and developing an adjustment inventory on boys and girls of X and XI classes and stated that girls exceed boys significantly in their adjustment to general environment and organizational aspect of the school. Rural school pupils exceed urban school pupils significantly in adjustment to their teachers, mates and self. Private school pupils are significantly better than government school pupils in their adjustment to the teachers.

Vani (1995) reported that girls are better on mental health than boys, although boys from co – educational schools were better than those in unisex schools. No such differences were observed in the case of girls.
Pathak in 1970 conducted a study on sex differences among school children in the areas of adjustment and concluded that the differences between boys and girls were significant on health, social and emotional adjustments but not significant on home and school adjustment aspects of the inventory. Inter-correlations between the five adjustment areas for boys and girl samples were positive.

The study done by Chaturvedi (1996) pointed out that the perception of maternal role among adolescent boys and girls affected differentially their level of aspiration and AA.

Suneeta and Mayuri (1999) found that family variables such as occupational status of parents, high socio-economic status (SES), small family, encouraging parents, sibling assistance significantly enhanced the AA of classes IX and X.

Taj’s (1999) study also gives evidence of AA being positively influenced by parent–child interaction, type of school management, and social class.

Ramchandran (1993) traced the causes of underachievement to social and family related variables.

Venugopal (1995) observed influence of teacher’s expectation on the growth of intelligence among high school students, but it had no effect on pupil achievement.

The present study dealt with several important findings: First it was found that AA is negatively correlated with AF in both urban and the rural areas. This shows that the high AA scores are associated with low AF scores and vice-versa. The reason for this may be that the students who score good marks in their studies may have several adjustment difficulties due to different reasons. This result gets support from Sabberwal (1967) who in his study found that there was negative correlation between tension and performance at the examination. This showed that high tension produced low marks and absence of tension resulted in high marks.

Secondly, the results also stated that AF are positively correlated with each other, i.e. H/FA, SA, P/EA, EA and HA are positively correlated with each other. This means that high scores in one adjustment factor are associated with high scores in the other and vice-versa. The reason for this may be that the students who adjust well in one area of adjustment are likely to adjust well in the other too. A student with good H/FA may also have good SA. The findings of this study are supported by Ved Prakash (1994) who
investigated positive relationship between school factors like school climate and educational aspiration, school environment and school adjustment and social values among male adolescent students. Likewise the results of this study can be correlated with Pathak (1970) who in his study on sex differences among school children in the areas of adjustment, pointed out that inter-correlations between the five adjustment areas (H/FA, SA, P/EA, EA and HA) for boys and girl samples were positive. A study done by Gupta (1996) also supports the result of this study where a significant relationship was found in adolescent girls on feelings of inferiority with emotional, social, educational and general adjustments.

The fourth finding is consistent with the study done by Singh and Verma. There is significant difference between the scores of AA of urban and rural students i.e. the AA of rural students is higher than that of the urban students. The reason may be that the rural students have less exposure to the mass media and other distracting factors compared to the urban students and thus can concentrate better in their studies. Singh and Verma (1995) found that only the less intelligent rural students have less academic aspirations than their urban counterparts.

The results of the studies done by Bhagia (1969) and Pandey (1979) partially support the present finding. They emphasized that rural school pupils exceed urban school pupils significantly in adjustment whereas the present finding states that adjustment of rural students is as good as the urban students. The reason may be that both the urban and rural students have a good level of adjustment in different areas of adjustment.

The reports of Sujatha Rani and Shanmugan are in favor of the findings of this study. The present study states that male have lower average scores than the females in H/FA and P/EA factors. This shows that females of rural areas are better in H/FA and P/EA compared to the males. The reason may be that females are more home-oriented and also emotionally more stable than males. In addition to this, the study also states that males have higher average scores than the females of rural areas in SA and EA. This shows that males of rural areas are good in SA and EA. The reason for this may be that they have more exposure to the social environment and mass media which enables them to have good SA and EA. Sujatha Rani (1981) reported that only adolescent boys of high income status are better adjusted at home than girls. School adjustment seems to become less and boys have better adjustment than girls. Besides, Shanmugan (1953), in his study claimed that boys from low socio-economic families have high emotional instability.
Yet another finding of the present study states that males have approximately the same average scores as the females in HA of rural areas. This means that males are as good as the females in HA. The reason for this may be that both male and female are equally cautious of maintaining good health. Vani (1995) in her study reported different results. She stated that girls are better on mental health than boys. This report again emphasizes the significance of the finding in this study.

4.6 Summary

The present study aimed at understanding the correlation between the various AF (home, social, personal & emotional, educational and health) and AA among urban and rural adolescent students using Pearson’s correlation formula. The descriptive statistics with respective findings of Means and SDs are also mentioned. The inferential data analysis was done with the help of t-test statistics.

This chapter is comprised of the entire data analysis and the results well tabulated and explained. Firstly the results from the urban sample are listed down followed by the results from the rural sample. Then the results from the combined data of the urban and the rural students (N=1119) are elaborated. The key results are summarized at the end of every section.

The interpretation and discussion in this chapter deals with three sections which are correlation study of AA and AF, gender difference on AA and gender and locality difference on AA.

From the analysis it was depicted that AA is negatively correlated with AF in both urban and rural samples. It was also noted that all the AF are positively correlated with each other. Besides, it was also found that AA and AF of female students are as good as the male students of urban and rural areas. It was also noted that there is no significant difference between the AA of urban males and females and there is significant difference between the AA of rural males and females. There is also significance difference between AA scores of urban and rural students. Finally it was concluded that there exist a significant relationship between AA and AF of urban and rural students. Various studies conducted by different researchers have supported the above mentioned findings.