Table of Contents

Chapter 1: Introduction
1.1 Introduction ... 1
 1.1.1 Industrialization & Environment 1
 1.1.2 Industrial Water Pollution 3
 1.1.3 Organic Pollution Due to Industrialization 5
 1.1.4 Effluent Characteristics of Textile, Pharmaceutical & Pesticide Industries 10
 1.1.4.1 Characteristics of Effluent Water in textile Industries 10
 1.1.4.2 Characteristics of Effluent Water in Pharmaceutical Industries 13
 1.1.4.3 Characteristics of Effluent Water in Pesticide/Insecticide Manufacturing Industries 14
 1.1.5 Recycle & Reuse 15
 1.1.6 Pollutant Removal Technique 18
 1.1.7 Adsorption Phenomena 20
 1.1.8 Removal of Organic Pollutants by Adsolubilization Technique 26
1.2 Literature Review 30
1.3 Need, Aim & Objective of the Study 46
1.4 Scope of the Study 47
1.5 Reference .. 48

Chapter 2:
Potential of Alumina in Removal of Anionic Surfactant Sodium Didecyl Sulphate (SDS) from Aqueous Solution & Preparation of Adsorbent – Anionic Surfactant Modified Alumina

2.1 Introduction ... 56
 2.1.1 Surfactants & Its Properties 56
 2.1.2 Composition & Structure of Surfactant 56
 2.1.3 Structure of Surfactants Phases in Water 57
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.4 Different Types of Surfactants</td>
<td>57</td>
</tr>
<tr>
<td>2.1.5 Anionic Surfactant (Sodium Dodecyl Sulphate)</td>
<td>60</td>
</tr>
<tr>
<td>2.1.6 Production of SDS</td>
<td>61</td>
</tr>
<tr>
<td>2.1.7 Application</td>
<td>61</td>
</tr>
<tr>
<td>2.1.8 Pollution Caused by Surfactants</td>
<td>61</td>
</tr>
<tr>
<td>2.1.9 Entry of Surfactants into the Aquatic Environment</td>
<td>63</td>
</tr>
<tr>
<td>2.1.10 Fate & Behavior of Surfactant in Aquatic Environment</td>
<td>64</td>
</tr>
<tr>
<td>2.1.11 Fate & Effects of the Anionic Surfactant - SDS</td>
<td>66</td>
</tr>
<tr>
<td>2.1.12 Alumina & Its Properties</td>
<td>67</td>
</tr>
<tr>
<td>2.1.12(A) Production of Alumina</td>
<td>67</td>
</tr>
<tr>
<td>2.1.13 Removal Of SDS by Alumina</td>
<td>67</td>
</tr>
<tr>
<td>2.1.14 Adsolubilization Principle</td>
<td>68</td>
</tr>
<tr>
<td>2.2 Materials & Methodology</td>
<td>69</td>
</tr>
<tr>
<td>2.2.1 Materials</td>
<td>69</td>
</tr>
<tr>
<td>2.2.2 Determination of Anionic Surfactant in Water/ Wastewater</td>
<td>70</td>
</tr>
<tr>
<td>2.2.3 Experimental Procedure for the Determination of SDS</td>
<td>72</td>
</tr>
<tr>
<td>2.2.4 Factors Affecting Removal of SDS by Alumina from Aqueous Solution</td>
<td>73</td>
</tr>
<tr>
<td>2.2.4(A) Experimental Set Up to Study Effects of pH</td>
<td>73</td>
</tr>
<tr>
<td>2.2.4(B) Experimental Set up to Study Effects of Contact Time</td>
<td>74</td>
</tr>
<tr>
<td>2.2.4(C) Experimental Set up to Study Effects of Adsorbent i.e. AluminaDosage</td>
<td>75</td>
</tr>
<tr>
<td>2.2.4(D) Experimental Set up to Study Effects of Adsorbate i.e. SDS Concentration</td>
<td>76</td>
</tr>
<tr>
<td>2.2.4(E) Effect of Temperature</td>
<td>77</td>
</tr>
<tr>
<td>2.2.5 Chemical Kinetic study</td>
<td>78</td>
</tr>
<tr>
<td>2.2.6 Batch Isotherm Studies</td>
<td>79</td>
</tr>
<tr>
<td>2.2.7 Adsorption Isotherm Studies</td>
<td>80</td>
</tr>
<tr>
<td>2.3 Result & Discussion</td>
<td>83</td>
</tr>
<tr>
<td>2.3.1(A) Effect of pH</td>
<td>83</td>
</tr>
</tbody>
</table>
2.3.1(B) Effect of Contact Time
2.3.1(C) Effect of Adsorbent Dosages
2.3.1(D) Effect of Initial Adsorbate (SDS) Concentration
2.3.1(E) Effect of Temperature
2.4 Chemical Kinetic Study
 1. Pseudo First Order Model
 2. Pseudo Second Order Model
 3. Intra-particle Diffusion Model
2.5 Adsorption Isotherm
 1. Langmuir Isotherm
 2. Freundlich Isotherm
 3. Temkin Isotherm
 4. BET Isotherm
2.6 Preparation of Adsorbent – Anionic Surfactant Modified Alumina (ASMA)
2.7 Conclusion
2.8 Recommendation
2.9 Reference

Chapter 3
Potential of Anionic Surfactant Modified Alumina in Removal of Phenol from Aqueous Solution
3.1 Introduction
 3.1.1 Phenol & Its Properties
 3.1.2 Production of Phenol
 3.1.3 Application
 3.1.4 Pollution Caused by Phenol
 3.1.5 Entry of Phenol into the Environment / Source of Phenol
 3.1.6 Fate and Behavior of Phenol in the Environment
3.1.7 Exposure to Phenol 132
3.1.8 Toxicity of Phenol 133
3.1.9 Treatment of Phenol Containing Water / Waste Water 135

3.2 Material & Methodology 135
3.2.1 Determination of Phenol in Water / Waste Water 135
3.2.2 Preparation of Anionic Surfactant Modified Alumina (ASMA) 139
3.2.3 Factors Affecting Removal of Phenol by ASMA from Aqueous Solution 140
 3.2.3(A) Experimental Set Up to Study Effects of pH 140
 3.2.3(B) Experimental Set up to Study Effects of Contact Time 141
 3.2.3(C) Experimental Set up to Study Effects of Adsorbent i.e. ASMA Dosage 142
 3.2.3(D) Experimental Set up to Study Effects of Adsorbate i.e. Phenol Concentration 143
 3.2.3(E) Effect of Temperature 144
3.2.4 Chemical Kinetic Study 145
3.2.5 Batch Isotherm Studies 147
3.2.6 Adsorption Isotherm Studies 147

3.3 Results & Discussion 150
 3.3.1(A) Effect of pH 150
 3.3.1(B) Effect of Contact Time 152
 3.3.1(C) Effect of Adsorbent Dosage 154
 3.3.1(D) Effect of Initial Adsorbate (Phenol) Concentration 159
 3.3.1(E) Effect of Temperature 160
3.3.2 Chemical Kinetic Study 163
 1. Pseudo First Order Model 163
 2. Pseudo Second Order Model 165
 3. Intra-particle Diffusion Model 167
3.3.3 Adsorption Isotherm Studies 169
 1. Langmuir Isotherm 169
2. Freundlich Isotherm 170
3. Temkin Isotherm 172
4. BET Isotherm 173

3.4 Regeneration Study 175
3.5 Removal of Phenol from the Wastewater Sample of Pharmaceutical Industry 176
3.6 Conclusion 177
3.7 Recommendation 179
3.8 Reference 181

Chapter 4
Potential of Anionic Surfactant Modified Alumina in Removal of Phenol from Aqueous Solution

4.1 Introduction 187

4.1.1 Crystal Violet 187
4.1.2 Production of Crystal violet 188
4.1.3 Synthesis of Crystal Violet 189
4.1.4 Dye Colour 189
4.1.5 Toxicological Information 190
4.1.6 Application of Crystal Violet 190
4.1.7 Source of Dye & Pollution Caused Due to Dye 192
4.1.8 Fate & Behavior of Dye in the Environment 194
4.1.9 Toxicity & Carcinogenicity of Dyes 195

4.2 Materials & Methodology 196

4.2.1 Determination of Crystal violet in Water 196
4.2.2 Preparation of Anionic Surfactant Modified Alumina (ASMA) 198
4.2.3 Factors affecting Removal of Crystal Violet by ASMA from Aqueous Solution 199
 4.2.3(A) Experimental Set up to Study Effects of pH 199
 4.2.3(B) Experimental Set up to Study Effects of Contact Time 200
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.3(C)</td>
<td>Experimental Set up to Study Effects of Adsorbent i.e. ASMA Dosage</td>
<td>201</td>
</tr>
<tr>
<td>4.2.3(D)</td>
<td>Experimental Set up to Study Effects of Adsorbate i.e. CV Concentration</td>
<td>202</td>
</tr>
<tr>
<td>4.2.3(E)</td>
<td>Effect of Temperature</td>
<td>203</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Chemical Kinetic Study</td>
<td>204</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Batch Isotherm Studies</td>
<td>206</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Adsorption Isotherm Studies</td>
<td>206</td>
</tr>
<tr>
<td>4.3</td>
<td>Results & Discussion</td>
<td>209</td>
</tr>
<tr>
<td>4.3.1(A)</td>
<td>Effect of pH</td>
<td>209</td>
</tr>
<tr>
<td>4.3.1(B)</td>
<td>Effect of Contact Time</td>
<td>212</td>
</tr>
<tr>
<td>4.3.1(C)</td>
<td>Effect of Adsorbent Dosage</td>
<td>215</td>
</tr>
<tr>
<td>4.3.1(D)</td>
<td>Effect of Initial Adsorbate (CV) Concentration</td>
<td>218</td>
</tr>
<tr>
<td>4.3.1(E)</td>
<td>Effect of Temperature</td>
<td>221</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Chemical Kinetic Study</td>
<td>223</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Adsorption Isotherm Studies</td>
<td>229</td>
</tr>
<tr>
<td>4.4</td>
<td>Regeneration Study</td>
<td>236</td>
</tr>
<tr>
<td>4.5</td>
<td>Removal of Mixed Dye from Actual Sample of Textile Industry by ASMA & DTAC Modified Silica Gel</td>
<td>237</td>
</tr>
<tr>
<td>4.6</td>
<td>Conclusion</td>
<td>238</td>
</tr>
<tr>
<td>4.7</td>
<td>Recommendation</td>
<td>240</td>
</tr>
<tr>
<td>4.8</td>
<td>Reference</td>
<td>242</td>
</tr>
</tbody>
</table>
Chapter 5
Potential of Silica Gel in Removal of Cationic Surfactant Dodecyl Trimethyl Ammoniumchloride (DTAC) from Aqueous Solution

5.1 Introduction 246
 5.1.1 Cationic Surfactants 246
 5.1.2 Production & Uses of Cationic Surfactants 247
 5.1.3 Properties of Cationic Surfactants 250
 5.1.4 Dodecyl Trimethyl Ammonium Chloride or Lauryltrimethyl Ammonium Chloride 254
 5.1.5 Entry of Surfactant into the Environment 254
 5.1.6 Toxicity of Caionic Surfactants 255
 5.1.7 Surfactant Pollution, Toxic Effects & Its Remediation 257
 5.1.8 Silica Gel & Its Properties 259
 5.1.9 Properties & Preparation of Silica Gel 260
 5.1.10 Surfactant Adsorption & Adsolubilization 260
 5.1.11 Mechanism of Surfactant Adsorption 264

5.2 Materials & Methodology 265
 5.2.1 Materials 265
 5.2.2 Determination of Cationic Surfactant in Water/Wastewater 265
 5.2.3 Experimental Procedure to Determine Cationic Surfactant from Water / Wastewater 268
 5.2.4 Factors Affecting Removal of DTAC by Silica Gel from aqueous Solution 269
 5.2.4(A) Experimental Set up to Study Effects of pH 269
 5.2.4(B) Experimental Set up to Study Effects of Contact time 270
 5.2.4(C) Experimental Set up to Study Effects of Adsorbent i.e. Silica Gel Dosage 261
 5.2.4(D) Experimental Set up to Study Effects of Adsorbate i.e. DTAC Concentration 272
 5.2.4(E) Effects of Temperature 273
 5.2.5 Chemical Kinetic Study 274
5.2.6 Batch Isotherm Studies
5.2.7 Adsorption Isotherm Studies
5.3 Results & Discussion
 5.3.1(A) Effects of pH
 5.3.1(B) Effect of Contact Time
 5.3.1(C) Effect of Adsorbent Dosage
 5.3.1(D) Effect of Initial Adsorbate (DTAC) Concentration
 5.3.1(E) Effect of Temperature
5.3.2 Chemical Kinetic Study
 1. Pseudo First Order Kinetic Model
 2. Pseudo Second Order Kinetic Model
 3. Intra-particle Diffusion Model
5.3.3 Adsorption Isotherm
 1. Langmuir Isotherm
 2. Freundlich Isotherm
 3. Temkin Isotherm
 4. BET Isotherm
5.4 Conclusion
5.5 Recommendation
5.7 Reference

Chapter 6
Potential of Cationic Surfactant Modified Silica Gel in Removal of Monocrotophos from Aqueous Solution
6.1 Introduction
 6.1.1 Pesticides/Insecticides
 6.1.2 Type of Pesticides/Insecticides
6.1.3 Oganophosphorous Pesticide/Insecticide 319
6.1.4 Structural Features of Organophosphate 320
6.1.5 Monocrotophos 321
6.1.6 Production, Regulation & Use of Monocrotophos 324
6.1.7 Entry of Pesticide in to the Environment 325
6.1.8 Pollution Caused by Pesticides & Remediation 328
6.1.9 Effects of Monocrotophos & Othe Pesticides on Health 329
6.1.10 Environmental & Agro-chemical Effects of Monocrotophos 332
6.1.11 Toxicity 334
6.1.12 Precautions 335
6.1.13 Environmental Fate & contamination 335
6.2 Materials & Methodology 337
6.2.1 Materials 337
6.2.2 Determination of Organo Phosphorus Pesticide – Monocrotophos in Water/Wastewater 337
6.2.3 Preparation of Cationic Surfactant Modified Silica Gel (CSMSG) 339
6.2.4 Factors Affecting Removal of Monocrotophos by CSMSG from Aqueous Solution 340
 6.2.4(A) Experimental Set up to Study Effects of pH 340
 6.2.4(B) Experimental Set up to Study Effects of Contact Time 341
 6.2.4(C) Experimental Set up to Study Effects of Adsorbent i.e. CSMSG Dosage 342
 6.2.4(D) Experimental Set up to Study Effects of Adsorbate i.e.e Monocrotophos Concentration 343
 6.2.4(E) Effect of Temperature 344
6.2.5 Chemical Kinetic Study 345
6.2.6 Batch Isotherm Study 347
6.2.7 Adsorption Isotherm Study 347
6.3 Results & Discussion 350
6.3.1(A) Effect of pH 350
6.3.1(B) Effect of Contact Time 353
6.3.1(C) Effect of Adsorbent Dosage 356
6.3.1(D) Effect of Adsorbate (Monocrotophos) Concentration 359
6.3.1(E) Effect of Temperature 362

6.3.2 Chemical Kinetic Study 364
1. Pseudo First Order Kinetic Model 364
2. Pseudo Second Order Kinetic Model 367
3. Intra-particle Diffusion Study 369

6.3.3 Adsorption Isotherm Studies 370
1. Langmuir Isotherm 370
2. Freundlich Isotherm 372
3. Temkin Isotherm 373
4. BET Isotherm 375

6.4 Regeneration Study 377

6.5 Removal of Organophosphate Pesticide from the Wastewater Sample of Pesticide Manufacturing Industry 379

6.6 Conclusion 379
6.7 Recommendation 381
6.8 Reference 383
Summary 388