CHAPTER 7

VISUALIZATION AND CONSTRUCTION OF REAL TIME WEB-CENTRIC INTELLIGENT HEALTH CARE DIAGNOSTIC SYSTEM USING UML

7.1 INTRODUCTION

Unified modeling language (UML) is appropriate for modeling systems ranging from enterprise information systems to distributed Web based applications. A visual modeling language, such as UML, allows software to be visualised in multiple dimension, so that a computer system can be completely understood before the construction begins. Furthermore, UML can be used to produce several models at increasing levels of detail. The overall scope of the software can quickly and easily be defined at the start of the project with a high level model allowing for accurate estimation. Details in increasing levels can then be added to each part of the software as it is constructed, until finally the software appears as code. The code can then be tested against a test model that is derived from the original model of requirements.

The ultimate aim of this research is to develop an overall scope of the Web based telehealth care intelligent diagnostic system using UML notations with a high level model allowing for accurate estimation. The Use Case Driven nature of modeling with UML ensures that all levels of model trace back to elements of the original functional requirements.
The justification that orients the precious detection of the diabetes diseases, as well as of any other diabetes related diseases is that the earlier the disease is diagnosed, more effective will be the more will be the cure, allowing less aggressive treatment. In a few years time, Internet and especially WWW developed quickly from a media of information sharing to a ubiquitous platform of several applications like online banking, e-governance, e-commerce, digital libraries etc. Today, the developers of expert systems have the good chance to share their applications via the Web also.

The promotion of an expert system includes a number of challenges that must be surmounted like: domain experts’ identification and persuasion for collaboration, knowledge acquisition and knowledge representation, coding, validation, verification etc. Hence, we propose a Web centric expert system with design, development and maintain a complex Web site, which embodies the expert system. Since there is a frantic rush to be on the Web, the number of expert systems are expected to grow, which is a reason for some of the current problems surrounding Web based systems development.

7.2 VISUALIZATION AND CONSTRUCTION OF REAL TIME WEB CENTRIC INTELLIGENT HEALTH CARE DIAGNOSIS SYSTEM USING UNIFIED MODELING LANGUAGE

The activity model is a variation of a state machine in which the states are activities representing the performance of operations. The
transitions are triggered by the completion of the operations. It represents a state machine of a procedure itself; the procedure is the implementation of an operation on the owning class.

Table 7.1 Activity of the objects

<table>
<thead>
<tr>
<th>OBJECTS</th>
<th>ACTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient</td>
<td>Login, Answer, Questions</td>
</tr>
<tr>
<td>Telehealth server</td>
<td>Verify, preliminary Questions, generate tests, indepth questions, generate diagnosis and prescription, Alert</td>
</tr>
<tr>
<td>Doctor</td>
<td>Approve the diagnosis</td>
</tr>
<tr>
<td>Attendant</td>
<td>Conduct tests, update the results</td>
</tr>
</tbody>
</table>

Figure 7.1 shows the activity diagram of the Web centric expert system that describes the dynamic aspects of the systems. It is a flow chart showing the flow of control from one activity to another activity of the Web centric expert system. It also depicts the sequential steps in a computational process. This activity diagram will be useful for constructing executable systems through forward and reverse engineering. Table 7.1 focuses on the activities that take place among the objects patient, telehealth server, doctor and attendant and the operations that pass among the objects.

We use activity diagrams in situations wherein all or most of the events represent the completion of internally-generated actions (that is, procedural flow of control). We use ordinary state diagrams in situations wherein asynchronous events occur.
A class diagram is a type of static structure diagram that describes the structure of a system by showing the system's classes, their attributes, and the relationships between the classes. Figure 7.2 shows the class diagram of the Web centric expert system with a set of classes like patients, hospitals, kiosk, doctors, and their attributes, interfaces, and collaborations and their relationships. It is the static design view of the Web centric expert system.

The purpose of a class diagram for Web centric expert system is to depict the classes within the model. In an object-oriented application, classes have attributes (member variables), operations (member functions) and relationships with other classes. The UML class diagram of Web centric expert system depicts all these things quite easily. The
fundamental element of the class diagram is an icon the represents a class. A class icon is simply a rectangle divided into three compartments. The topmost compartment contains the name of the class (patient). The middle compartment contains a list of attributes (member variables- name, address, email-id, date of birth etc), and the bottom compartment contains a list of operations (member functions-login, answer questions, undergo tests).

![Diagnosis- Class Diagram](image)

Figure 7.2- Class diagram of Web centric diabetes diagnosis Telemedicine system

The collaboration diagram focuses upon the relationships between the objects. They are very useful in visualizing the way several objects collaborate to get a job done and for comparing a dynamic model with a static one. Collaboration and
sequence diagrams describe the same information, and can be transformed into one another without difficulty. The collaboration diagram of Web centric expert system allows us to name a conceptual chunk that encompasses both static and dynamic aspects. It names a society of classes, interfaces, and other elements that work together to provide cooperative behavior.

Figure 7.3 illustrate the interactions between objects and facilitates the collaboration of objects. A distinguishing feature of a collaboration diagram is that it shows the objects and their associations with other objects in the system apart from explaining how they interact with each other. The association between objects is not represented in a sequence diagram. A collaboration diagram is easily represented by modeling objects in a system and representing the associations between the objects as links. The interaction between the objects is denoted by arrows. To identify the sequence of invocation of these objects, a number is placed next to each of these arrows.
Figure 7.3. Collaboration diagram of Web centric diabetes diagnosis

Telemedicine system

The main purpose of the component diagram is to show the structural relationships between the components of a system. Component diagrams are useful communication tools for various groups. The diagrams can be presented to key project stakeholders and the implementation staff. Developers find the component diagram useful because it provides them with a high-level, architectural view of the system that they will be building, which helps developers begin formalizing a roadmap for the implementation, and make decisions about task assignments and/or needed skill enhancements. Figure 7.4 shows a component diagram which depicts how a Web centric intelligent health care diagnosis system is split up into physical components and shows the dependencies among these components. Physical components could be, for example, files, headers, link libraries, modules, executables, or packages.
Figure 7.4. Component diagram of Web centric diabetes diagnosis

Telemedicine system

Figure 7.5 shows the UML sequence diagram, which models the flow of logic within the system in a visual manner, enabling us both to document and validate our logic, and are commonly used for both analysis and design purposes. Sequence diagrams are the most popular UML artifact for dynamic modeling, which focuses on identifying the behavior within our system.

Sequence diagrams are typically used to model:

- **Usage scenarios**- A usage scenario is a description of a potential way our system is used.
- **The logic of methods**- Sequence diagrams can be used to explore the logic of a complex operation, function, or procedure.
- **The logic of services**- A service is effectively a high-level method, often one that can be invoked by a wide variety of clients.

![Sequence Diagram](image)
Figure 7.5. Sequence diagram of Web centric intelligent health care diagnosis system

The use case diagram is used to identify the primary elements and processes that form the system as shown in Figure 7.6. The primary elements are termed as "actors" and the processes are called "use cases." The Use case diagram shows which actors interact with each use case. A use case diagram captures the functional aspects of a system. Due to the simplicity of use case diagrams, and more importantly, because they are shorn of all technical jargon, use case diagrams are a great storyboard tool for user meetings. Use case diagrams define the requirements of the system being modeled and hence are used to write test scripts for the modeled system.

Figure 7.6. Use case diagram of Web centric intelligent health care diagnosis system
UML state charts are normally needed when an object has a different reaction dependent on its state. The state design pattern uses polymorphism to define behavior. The state pattern passes a reference to the state it wants to set. It normally uses the singleton pattern to pass this reference meaning to the states that are global. State chart diagram shown in Figure 7.7 represents the behavior of entities capable of dynamic behavior by specifying its response to the receipt of event instances. Typically, it is used for describing the behavior of classes, but state charts may also describe the behavior of other model entities such as use-cases, actors, subsystems, operations, or methods.

Figure 7.7. State chart diagram of Web-centric intelligent health care diagnosis

7.3 RESULTS AND DISCUSSIONS
The functionality of telehealth care solution is to interact with the patient via the Internet through the user interface at the patient kiosk. Figure 7.8 shows the patient entry login that can be done at the patient kiosk end or at home through Internet.

![Patient Login](image)

Figure 7.8 The patient entry login

The tele expert system will conduct a virtual consultation session with the user through the user interface to determine his/her current health profile. The virtual consultation session is a GUI based dialogue between the user and the tele expert system application during which the expert system forwards the number of questionnaire to the user either to collect information / verify available information and / or derived conclusions as shown in Figure 7.9. The user is expected to provide valid
responses to the questions presented by the expert system in a touch screen mode or through the customized keyboard.

![Diagnostic Questions](image)

Figure 7.9. The virtual consultation session between the user and the tele expert system

Based on the user’s responses, the next questionnaire is generated and passed back to the user. Each consultation session spans across multiple transactions between the user and the tele expert system. The attractive feature of the tele expert system is that it dynamically generates the questions to be asked of the user based on the user’s current health profile and his / her earlier submitted responses. During the consultation, patient is suggested to undergo a series of suitable tests. Figure 7.10 shows the Kiosk End: Tele-Health server analyses the responses and suggests and tests to be undergone by the patient.
Patient has to move to the testing kiosk system, which is interfaced with all the needed diagnostic instruments. Assisted by a technician, the patient undergoes the prescribed tests. Data acquired during the tests process is automatically fed into the tele expert system for diagnosis. The expert system makes a diagnosis by not just considering the current signs and symptoms of an individual but taking into account factors such as the individual medical history, present medications and treatment plans, if any, as recorded in the individual’s telehealth patient database.

Figure 7.11 shows the diagnosis report generated by the tele expert system which will be submitted to the doctor end of the chosen hospital for further review and confirmation.
Figure 7.11. Diagnosis report generated by the tele expert system

The doctor interface helps the clinician to view his own patients who have requested for healthcare assistance. Doctor can view the patient history, test results and the diagnosis summary generated by the Expert system based on the symptoms and history of the patient and medication as shown in Figure 7.12.
Figure 7.12. Diagnosis summary generated by the expert system

The doctor can review and confirm the diagnosis report and the same is forwarded to the patient end through the telehealth server as shown in Figures 7.13. A copy of the summary is recorded in the telehealth patient database. A database (case database) is maintained to record the patient name, location of patient request, consulting doctor, the hospital and so on.
Figure 7.13. The doctor’s editing option to confirm the diagnosis report

Figure 7.14. The doctor’s editing option to confirm the prescription generated by the expert system
A confirmed diagnosis report along with the prescription will be submitted to the patient end for print out as shown in Figure 7.14. Under critical conditions, the patient is suggested to come ONLINE with the doctor through videoconferencing or messaging facility for further medical assistance.

![Image of prescription and diet chart generated by the tele diagnosis system.](image)

Figure 7.15. The prescription and diet chart generated by the tele diagnosis system.

The prescription and diet chart will be generated by the tele diagnosis system as shown in Fig.7.15. When any request is received from kiosk to the telehealth server, the server checks for validity of the user. If the patient is a registered user, the tele expert system conducts a virtual consultation session based on previous history and this can be viewed as Web page at the patient kiosk end.
Load balancing is the major feature that is looked after by the Telehealth server. When server receives multiple requests simultaneously, load balancing is done to get optimal resource utilization and decrease computing time. 2-mirrored HDD are used to attain greater degree of fault tolerance, which allows the service to continue even in the face of server down time due to server failure or server maintenance.

Once the dialogue between the healthcare institution end and the patient kiosk end is complete, a copy of the generated report from the expert system and the finalized report from the doctor end is stored in the telehealth patient database.

7.4 CONCLUSIONS

The potential benefits of decision support systems for diabetic patient management are seen to be the cost saving they provide in terms of man-hours of verbal instruction by medical experts, the support in terms of objectives and consistent decision making.

The UML is not a visual programming language, but its models can be directly connected to a variety of programming languages. This Design process has been followed for WEBDIACIN. The Web based intelligent Tele diabetes diagnosis expert system WEBDIACIN, has the ability to access our diabetes expert system from any part of the world.