LIST OF FIGURES

Figure 1. A schematic description of the origin of hexaploid wheat, *Triticum aestivum*; hexaploid wheat originated through hybridization and polyploidization involving tetraploid wheat, *T. turgidum*, and a diploid species *Aegilops tauschii*. *T. turgidum* originated from hybridization and polyploidization involving a diploid species *T. urartu* and an unknown diploid species having BB genome

Figure 2. Status of the IWGSC physical mapping projects as of January 2010. Chromosomes boxed in red continuous line represent funded and chromosomes boxed in red interrupted line represent pending projects as on August 2008

Figure 3. BLASTN results, where segments 1, 2 and 3 are consecutive segments in the query sequence (wEST) and their match in the genomic sequence (1’ 2’ and 3’) of brachypodium are also consecutive, although in the brachypodium sequence, there are two gaps, one between segments 1’ and 2’, and the other between 2’ and 3’. The segments (1, 2 and 3) of wheat EST-sequence matching with segments (1’ 2’ and 3’) of brachypodium sequence make longest consecutive HSP in correct order

Figure 4. A representative map showing three wheat homoeologous group 3 chromosomes (3A, 3B and 3D) and the group 3 consensus chromosome (WC3). The deletion bin or bin break points designations are given on the left and EST locus mapped to the corresponding bin is on the right of each chromosome. For the consensus chromosome, the consensus bin breakpoints are identified on the left and consensus EST locus is given on the right. C indicates centromere

Figure 5. Steps involved in targeted physical mapping of SSRs in wheat through wet-lab approach (exemplified using chromosome 6B); the dark areas are the heterochromatic bands which serve as landmark patterns identifying this chromosome uniquely. The arrows indicate breakpoints of the deletion stocks available. Three sequential deletion stocks of the short arm of chromosome 6B (6BS) are shown as #1, #2 and #3 and illustrate the logic of deletion mapping. If the DNA from each stock is probed for presence of a DNA sequence (SSR), corresponding to a given sequence, the presence of band for that sequence in the first two (#1, #2) and its absence in the third (#3) indicates that the sequence is present in the physical portion (called as bin of various sizes) of the chromosome arm that is present in stock #2 (bracketed with red) and missing in stock #3

Figure 6. Gel pictures showing physical mapping of SSR loci. (a) PCR amplification profiles used for physical mapping of a wheat gSSR mwm152 (195bp), which is mapped on chromosome arm 3BL in distal bin; Lanes M 100-bp ladder, 1 Chinese Spring (CS), 2 N3BT3A, 3 N3BT3D, 4 Dt3BS, 5 Dt3BL, 6 3BS-5, 7 3BS-10, 8 3BS-2, 9 3BS-8, 10 3BS-3, 11 3BL-2, 12 3BL-8, 13 3BL-3, 14 3BL-9, 15 3BL-10, 16 3BL-7, 17 3BL-11. (b) PCR amplification profiles used for physical mapping of a brachypodium gSSR mbm16 (200 bp), which is mapped on chromosome arm 7BL in an interstitial bin defined by deletion breakpoints 7BL-10 0.50 and 7BL-7 0.63; Lanes M 100-bp ladder, 1 Bd21, 2 Chinese Spring (CS), 3 N7BT7A, 4 N7BT7D, 5 Dt7BS, 6 Dt7BL, 7 7BS-3, 8 7BS-1, 9 7BL-14, 10 7BL-2, 11 7BL-1, 12 7BL-9, 13 7BL-7, 14 7BL-5, 15 7BL-10, 16 7BL-6, 17 7BL-13, 18 7BL-11. (c) PCR amplification profiles used for
physical mapping of a brachypodium EST-SSR bde55 (192 bp), which is mapped on chromosome arm 6BS in proximal bin; Lanes M 100-bp ladder, 1 Bd21, 2 Chinese Spring (CS), 3 N6BT6A, 4 N6BT6D, 5 Dt6BS, 6 Dt6BL, 7 6BS-1, 8 6BS-4, 9 6BS-5, 10 6BS-9, 11 6BS-6, 12 6BS-2, 13 6BS-7. (d) PCR amplification profiles used for physical mapping of a brachypodium EST-SSR bde16 (205 bp), which is mapped on chromosome arm 1BS in centromeric bin; Lanes M 100-bp ladder, 1 Bd21, 2 Chinese Spring (CS), 3 N1BT1A, 4 N1BT1D, 5 Dt1BS, 6 Dt1BL, 7 1BS-21, 8 1BS-15, 9 1BS-20, 10 1BS-2, 11 1BS-5, 12 1BS-19.

Figure 7a-u. Integrated physical maps of SSRs for all the 21 wheat chromosomes (right side) and their comparison with available genetic maps (left side). Arrows and description on the right side of integrated physical maps are deletion break points, deletion designations and fraction lengths; boxes on the left contain mapped markers within bins covered by a vertical line; corresponding SSR loci in physical and genetic maps are connected by dotted lines.

Figure 8a-g. Graph plots showing physical distribution of recombination frequencies (cM/Mb) along individual wheat chromosomes. The frequency of recombination was calculated by dividing the length of a genetic sub-region in cM by the length of the corresponding physical sub-region (bin) in Mb and was plotted at the midpoint of each physical sub-region or bin. The oval shaped black dot indicates physical position of the centromere, which is also represented by ‘C’. Vertical lines on the chromosome ideogram indicate break points that divide the chromosome into sub-regions or bins. Name and fraction length of each bin is given below the break point and along the chromosome.

Figure 9. Distribution of orthologous bEST contigs (BdC) on wheat chromosomes belonging to homoeologous groups 1 to 7 (21 chromosomes). bEST contigs are shown on the right and arm fraction lengths are given on the left. Vertical lines on the right, covering an arm, means that the corresponding bEST contig (shown in bold) could not be assigned to a specific bin and was assigned to the arm; vertical lines covering more than one bins means that corresponding wEST was earlier mapped to a ‘combined bin’, rather than to an individual bin. The bEST contigs, which could not be assigned to bins and were assigned to individual chromosomes (with no information about arm), are listed at the bottom of each such individual chromosome.

Figure 10. Distribution of orthologous bEST contigs (BdC; shown on the right side) on 12 rice chromosomes.

Figure 11. A pie-chart showing relative frequencies (%) of ESTs among 183 conserved bEST orthologous sequences based on different biological functions and molecular activities.

Figure 12. A representative pattern of brachypodium SSR marker PCR products showing conservation in the genomes of wheat and rice. Lane M, 100 bp DNA ladder; lane 1, brachypodium DNA (Bd 21); lane 2, wheat DNA (Chinese Spring); lane 3, rice DNA (IR-1). The primers (L/R) used were (A) BDEST01P1_Contig9; (B) BDEST01P1_Contig1223; (C) BDEST01P1_Contig2416; (D) BDEST01P1_Contig3247; (E) BDEST01P1_Contig3747.

Figure 13. Syntenic relationships between wheat and brachypodium genomes. The seven consensus chromosomes of wheat are shown in pink colour. The deletion break points and
fraction length values are shown on the left of each chromosome. The boxes are colour coded according to the syntenic relationships with brachypodium chromosomes. The number of wESTs showing significant matches with brachypodium sequences is shown inside the coloured boxes, while the number of wESTs showing significant matches with more than one brachypodium chromosomes is shown outside the coloured boxes. ‘C’ represents position of centromere

Figure 14. Histogram showing Ka/Ks distribution among 153 homolog pairs of wheat and brachypodium

Figure 15. Evolution of the wheat \((n=7)\) and brachypodium \((n=5)\) chromosomes from a common intermediate ancestral genome with \(n=12\)