CONTENTS

ABSTRACT i-vi
DECLARATION
CERTIFICATE OF SUPERVISOR
ACKNOWLEDGEMENT vii-viii
TABLE OF CONTENTS ix-xviii
LIST OF TABLES xix-xxii
LIST OF FIGURES xxiii-xxx
ABBREVIATIONS xxxi

CHAPTER I: Introduction 1-39
1.1 Introduction 1
1.2 Snake envenomation: The snakebite problem 3
 1.2.1 Epidemiology of snakebite in Asia 4
 1.2.2 Epidemiology of snakebite in India 5
 1.2.3 Epidemiology of snakebite in other countries 6
1.3 Indian Russell’s viper (Daboia russelli): Systematic classification and distinctive features 7
 1.3.1 Systematic classification 8
 1.3.2 Distinctive feature 8
 1.3.3 Description 8
 1.3.4 Fang structure of Viperidae snakes including Russell’s viper 9
 1.3.5 Distribution 10
 1.3.6 Pathophysiological and clinical symptoms of Russell’s viper envenomation in human victims 11
1.4 Snake venom: In a broad-spectrum concern 13
 1.4.1 Variation in snake venom composition and its impact on pathogenesis 15
 1.4.2 Snake venom phospholipase A₂ (PLA₂) enzymes: Classification, structure and functions 16
 1.4.2.1 Classification of Phospholipase A₂ (PLA₂) enzymes 18
 1.4.2.1.1 Classification of PLA₂ enzymes depending on their ability to prolong blood clotting time 21
 1.4.2.2 Structure and mechanism of action of snake venom phospholipase A₂ enzymes 23
 1.4.2.2.1 Structure of snake venom PLA₂ enzymes 23
 1.4.2.3 The catalytic mechanism of snake venom PLA₂ enzymes 26
1.4.2.4 Mechanism of action of snake venom anticoagulant PLA₂s on blood coagulation

1.4.2.5 Pharmacological properties of snake venom PLA₂ enzymes

1.5 Pharmacological Sites
1.6 Anticoagulant Region
1.7 Importance of identification of pharmacological sites
1.8 Purification of PLA₂ enzymes from snake venom
1.9 Origin and Evolution of PLA₂ Gene
1.10 Anticoagulant PLA₂ enzymes from snake venom: Potential candidates for the developing of novel drugs against cardiovascular diseases
1.11 Role of medicinal plants in snakebite treatment
1.12 Aims and objectives of the present study

CHAPTER II: Review of Literature

2.1 Snake venom enzymes: A general consideration
2.2 Russell’s viper venom enzymes
2.3 Phospholipase A₂ (PLA₂): A major enzyme of Russell’s viper venom
 2.3.1 Membrane damaging property of the snake venom PLA₂s
 2.3.2 Anticoagulant property of snake venom PLA₂s
2.4 Enzymatic activity and Pharmacological properties of PLA₂s
2.5 Enzymatic activity and anticoagulant activity of PLA₂s
2.6 Purification of phospholipase A₂ (PLA₂s) enzymes from Indian Russell’s viper (Daboia russelli) venom
2.7 Role of medicinal plants in snakebite treatment

CHAPTER III: Materials and Methods

3.1 Materials
 3.1.1 Animals and housing conditions
3.2 Methods
 3.2.1 Characterization of isoenzyme pattern of anticoagulant PLA₂s of crude Russell’s viper (Daboia russelli) venom of eastern India origin
 3.2.1.1 Fractionation of crude RVV by cation exchanger (CM Sephadex C-50) to identify the basic PLA₂s
 3.2.1.2 Fractionation of CM Sephadex flow through anion exchanger (DEAE Sephadex A-50) to identify the neutral and acidic PLA₂s
 3.2.2 Purification of an acidic anticoagulant PLA₂ (RVVA-PLA₂-I) from Russell’s viper venom
 3.2.2.1 Fractionation of CMIDEV by gel filtration chromatography
by using Sephadex G-50 column

3.2.2.2 Fractionation of CMIDEV-GFI by RP-HPLC

3.2.3 Purification of a neutral anticoagulant PLA$_2$ (RVVN-PLA$_2$-I) from crude RVV

3.2.3.1 Fractionation of CMIDEI by gel filtration chromatography by using Sephadex G-50 column

3.2.3.2 Fractionation of CMIDEI-GFIII by RP-HPLC

3.2.4 Purification of a basic anticoagulant PLA$_2$ (RVVB-PLA$_2$-I)

3.2.4.1 Fractionation of CM-AC-IV by gel filtration chromatography by using Sephadex G-50 column

3.2.4.2 Fractionation of CM-AC-IV-GFIII by RP-HPLC

3.2.5 Criteria of purity and determination of molecular weight of the purified anticoagulant PLA$_2$s

3.2.5.1 Gel Filtration Chromatography

3.2.5.2 Reverse-phase high performance liquid chromatography (RP-HPLC)

3.2.5.3 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)

3.2.5.4 Electrospray ionization-mass spectrometry (ESI/MS)

3.2.6 Biochemical characterisation

3.2.6.1 Estimation of protein content

3.2.6.2 Estimation of carbohydrate content

3.2.6.3 Assay of phospholipase A$_2$ (PLA$_2$) activity

3.2.6.3.1 Turbidometric Method

3.2.6.3.2 Titrametric Method

3.2.6.4 Assay of protease activity

3.2.6.5 Assay of acetylcholinesterase activity

3.2.6.6 Assay of adenosine monophosphatase (AMPase) activity

3.2.6.7 Assay of adenosine triphosphatase (ATPase) activity

3.2.6.8 Enzyme Kinetics

3.2.6.8.1 Substrate specificity of PLA$_2$ enzymes

3.2.6.8.2 Effect of substrate concentration on PLA$_2$ activity

3.2.6.8.3 Effect of enzyme concentration on PLA$_2$ activity

3.2.6.8.4 Determination of Km and Vmax for the enzyme catalyzed reactions

3.2.6.8.5 Determination of temperature optimum for PLA$_2$ catalyzed reactions

3.2.6.8.6 Determination of pH optimum for PLA$_2$ catalyzed reactions
3.2.6.8.7 Circular dichroism 67
3.2.6.8.8 Heat inactivation study of PLA₂ enzymes 67
3.2.6.8.9 Chemical modification of PLA₂ enzymes by pBPB 67
3.2.6.8.10 Chemical modification of PLA₂ enzymes by other inhibitors 68
3.2.6.8.11 Fluorescence spectrophotometric measurements of phospholipids-PLA₂ and coagulation factors-PLA₂ interactions 68
3.2.6.8.12 Study of inhibitory effect of PLA₂s on prothrombin activation by factor Xa: amidolytic activity assay of thrombin generation 69
3.2.6.8.13 Effect of PLA₂ on amidolytic activity of factor Xa 69

3.2.7 Pharmacological Characterization 70
3.2.7.1 Assay of plasma clotting activity 70
3.2.7.1.1 Ca₂⁺ clotting time 70
3.2.7.1.2 Prothrombin time test 70
3.2.7.1.3 Gas-chromatography analysis of liberated fatty acids from plasma phospholipids 71
3.2.7.2 Direct and indirect haemolytic activity assay 72
3.2.7.3 In-vitro tissue damaging activity assay 72
3.2.7.4 Assay of Antibacterial activity of the PLA₂ enzymes 73
3.2.7.5 Isolation of chicken liver mitochondria 73
3.2.7.5.1 Assay of membrane damaging activity 74
3.2.7.5.2 Analysis of fatty acids released from membranes by GC-MS 75
3.2.7.5.3 Enzyme immunoassay to determine the binding of Russell’s viper venom-PLA₂s with membranes 76
3.2.7.6 Cytotoxicity assay on tumour cells 76
3.2.7.7 In vivo animal experiments 77
3.2.7.7.1 Determination of toxicity on mice 77
3.2.7.7.2 Histopathological examination 78

3.2.8 Immunological Characterization 78
3.2.8.1 Immunological cross-reactivity 78
3.2.8.2 Enzyme-linked immunosorbent assay (ELISA) 79

3.2.9 Preparation of plant extract 79

3.2.10 Neutralization of catalytic activity and pharmacological properties of purified PLA₂ enzymes 80
3.2.10.1 By polyvalent antivenom 80
3.2.10.2 By plant extract 80
3.2.11 Storage Stability of PLA₂ enzymes

CHAPTER IV: Isoenzyme patterns of phospholipase A₂ enzymes of Russell’s viper venom

4.1 Separation of basic phospholipase A₂ (PLA₂) enzymes by fractionation of crude Daboia russelli venom through a cation exchanger

4.2 Fractionation of CM Sephadex C-50 unbound proteins through an anion exchanger to separate the neutral and acidic PLA₂ isoenzymes

CHAPTER V: Isolation, purification, biochemical and pharmacological characterisation of an acidic anticoagulant phospholipase A₂ (PLA₂) enzyme (RVVA-PLA₂-I) from venom of Russell’s viper (Daboia russelli) of eastern India origin

5.1 Purification of an acidic anticoagulant phospholipase A₂

5.1.1 Fractionation of crude RVV through cation exchanger followed by fractionation of CMI through anion exchanger

5.1.2 Fractionation of CM IDEV through gel filtration column Sephadex G-50

5.1.3 Purification of an acidic PLA₂ by RP-HPLC of GFI

5.1.4 Assessment of purity and determination of molecular mass of RVVA-PLA₂-I

5.1.4.1 Gel filtration chromatography and SDS-PAGE

5.1.4.2 ESI/MS analysis of RVVA-PLA₂-I

5.2 Biochemical Characterisation

5.2.1 PLA₂ specific activity

5.2.2 Dose dependent PLA₂ activity

5.2.3 Carbohydrate content

5.2.4 Substrate Specificity of RVVA-PLA₂-I

5.2.4.1 Effect of substrate concentration on catalytic activity of RVVA-PLA₂-I

5.2.5 Determination of kinetics (Km and Vmax) of PC hydrolysis

5.2.6 Optimum temperature

5.2.7 Optimum pH

5.2.8 Determination of secondary structure: Circular dichroism spectroscopy

5.3 Pharmacological Characterization

5.3.1 Anticoagulant activity

5.3.1.1 Prothrombin time test

5.3.1.2 Plasma phospholipids hydrolysis and FFAs release
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.1.3</td>
<td>Binding of RVVA-PLA₂-I with different phospholipids</td>
<td>109</td>
</tr>
<tr>
<td>5.3.1.4</td>
<td>Binding of RVVA-PLA₂-I with blood coagulation factors</td>
<td>113</td>
</tr>
<tr>
<td>5.3.1.5</td>
<td>Prothrombin inhibition assay</td>
<td>114</td>
</tr>
<tr>
<td>5.4</td>
<td>Direct and indirect haemolytic activity of RVVA-PLA₂-I</td>
<td>117</td>
</tr>
<tr>
<td>5.5</td>
<td>In-vitro tissue damaging activity of RVVA-PLA₂-I</td>
<td>118</td>
</tr>
<tr>
<td>5.6</td>
<td>Stability of RVVA-PLA₂-I at 4 °C</td>
<td>119</td>
</tr>
<tr>
<td>5.7</td>
<td>Membrane phospholipids hydrolysis by RVVA-PLA₂-I</td>
<td>120</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Mitochondrial membrane phospholipids hydrolysis</td>
<td>120</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Effect of RVVA-PLA₂-I on erythrocytes membrane phospholipids hydrolysis</td>
<td>124</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Binding study of RVVA-PLA₂-I with membrane phospholipids</td>
<td>128</td>
</tr>
<tr>
<td>5.8</td>
<td>Effects of chemical inhibitors, antivenom and temperature on catalytic and pharmacological properties of RVVA-PLA₂-I</td>
<td>129</td>
</tr>
<tr>
<td>5.9</td>
<td>Other Pharmacological properties</td>
<td>132</td>
</tr>
<tr>
<td>5.9.1</td>
<td>Antibacterial activity</td>
<td>132</td>
</tr>
<tr>
<td>5.9.2</td>
<td>Cytotoxicity assay</td>
<td>133</td>
</tr>
<tr>
<td>5.10</td>
<td>In-vivo toxicity assay in BALB/c mice model</td>
<td>135</td>
</tr>
<tr>
<td>5.10.1</td>
<td>Lethality and in-vivo toxicity</td>
<td>135</td>
</tr>
<tr>
<td>5.10.2</td>
<td>Effect of in vitro blood coagulation</td>
<td>135</td>
</tr>
<tr>
<td>5.10.3</td>
<td>Effect on blood cells</td>
<td>135</td>
</tr>
<tr>
<td>5.10.4</td>
<td>Effect of RVVA-PLA₂-I on serum parameters of mice</td>
<td>138</td>
</tr>
<tr>
<td>5.10.5</td>
<td>Histopathological study</td>
<td>140</td>
</tr>
<tr>
<td>5.11</td>
<td>Immunological cross reactivity</td>
<td>141</td>
</tr>
<tr>
<td>5.11.1</td>
<td>Immunodiffusion</td>
<td>141</td>
</tr>
<tr>
<td>5.12</td>
<td>Screening of Indian medicinal plants for anti snake venom activity</td>
<td>143</td>
</tr>
<tr>
<td>5.12.1</td>
<td>Neutralization by Azadirachta indica</td>
<td>143</td>
</tr>
<tr>
<td>5.12.2</td>
<td>Neutralization by Camellia sinensis, Xanthium strumarium and Aegle marmelos</td>
<td>144</td>
</tr>
</tbody>
</table>

CHAPTER VI: Purification, biochemical and pharmacological characterisation of a neutral anticoagulant phospholipase A₂ enzyme (RVVN-PLA₂-I) from venom of Russell’s viper (Daboia russelli) of eastern India origin

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Purification of a neutral anticoagulant phospholipase A₂</td>
<td>150</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Fractionation of CMIDEI through gel filtration column</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Sephadex G-50</td>
<td></td>
</tr>
<tr>
<td>6.1.2</td>
<td>Purification of a neutral PLA₂ enzyme by RP-HPLC of GFIll</td>
<td>152</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Assessment of purity and determination of molecular mass of RVVN-PLA₂-I</td>
<td>154</td>
</tr>
</tbody>
</table>
6.1.3.1 Gel filtration chromatography and SDS-PAGE 154
6.1.3.2 ESI/MS analysis of RVVN-PLA₂-I 155

6.2 Biochemical Characterisation of RVVN-PLA₂-I 156
6.2.1 PLA₂ specific activity 156
6.2.2 Substrate Specificity of RVVN-PLA₂-I 157
6.2.3 Effect of substrate (PS) concentration on catalytic activity of RVVN-PLA₂-I 157
6.2.4 Effect of enzyme concentration 158
6.2.5 Carbohydrate content 159
6.2.6 Determination of Km and Vmax of PS hydrolysis 159
6.2.7 Optimum temperature 161
6.2.8 Optimum pH 162
6.2.9 Secondary structure determination by Circular dichroism 163

6.3 Pharmacological characterization of RVVN-PLA₂-I 164
6.3.1 Anticoagulant activity 164
 6.3.1.1 Plasma clotting time 164
 6.3.1.2 Prothrombin time test 164
 6.3.1.3 Effect of RVVN-PLA₂-I on plasma phospholipids hydrolysis and FFAs release 166
 6.3.1.4 Binding of RVVN-PLA₂-I with different phospholipids 167
 6.3.1.5 Interaction of RVVN-PLA₂-I with blood coagulation factor Xa, factor Va, prothrombin and thrombin 168
6.3.2 Direct and indirect haemolytic activity 170
6.3.3 In-vitro tissue damaging activity 171
6.3.4 Stability of RVVN-PLA₂-I after storage at 4 °C 172

6.4 Membrane phospholipids hydrolysis by RVN-PLA₂-I 173
6.4.1 Effect of RVVN-PLA₂-I on mitochondrial membranes phospholipids hydrolysis 173
6.4.2 Effect of RVVN-PLA₂-I on erythrocyte membranes phospholipids hydrolysis 177
6.4.3 ELISA: Binding study of RVVN-PLA₂-I with membrane Phospholipids 181

6.5 Effects of chemical inhibitors, antivenom and heating on catalytic and pharmacological properties of RVVN-PLA₂-I 182

6.6 Other pharmacological properties of RVVN-PLA₂-I 185
6.6.1 Antibacterial activity 185
6.6.2 In vitro cytotoxicity assay on mammalian cells 186

6.7 In-vivo toxicity assay 188
6.7.1 Lethality and in-vivo toxicity in mice 188
6.7.2 Anticoagulant effect 188
6.7.3 Effect on blood cells 188
6.7.4 Effect on serum parameters 191
6.7.5 Histopathological study 193
6.8 Immunological cross reactivity 194
6.8.1 Immunodiffusion 194
6.9 Neutralization by plant extracts 195
6.9.1 Neutralization by AlPLAI 195
6.9.2 Neutralization by *Camellia sinensis*, *Aegle marmelos* and *Xanthium strumarium* 196

CHAPTER VII: A basic anticoagulant phospholipase A$_2$ enzyme 200-251
(RVVB-PLA$_{2}$-I) isolated and purified from *Daboia russelli* venom: its biochemical and pharmacological characterisation

7.1 Purification of a basic anticoagulant phospholipase A$_2$ 200
7.1.1 Fractionation of CM-AC-IV by Sephadex G-50 gel filtration column 200
7.1.2 RP-HPLC of GFIII: Purification of a basic PLA$_2$ 202
7.1.3 Assessment of purity and determination of molecular mass of RVVB-PLA$_{2}$-I
 7.1.3.1 Gel filtration chromatography and SDS-PAGE 205
 7.1.3.2 ESI/MS analysis of RVVB-PLA$_{2}$-I 206

7.2 Biochemical Characterisation of RVVB-PLA$_{2}$-I 207
7.2.1 PLA$_2$ activity and substrate specificity 207
7.2.2 Carbohydrate content 207
7.2.3 Effect of substrate (PC) concentration on catalytic activity of RVVB-PLA$_{2}$-I 208
7.2.4 Effect of enzyme concentration 209
7.2.5 Determination of kinetics (Km and Vmax) of PC hydrolysis by RVVB-PLA$_{2}$-I 209
7.2.6 Optimum temperature 211
7.2.7 pH optima 212
7.2.8 Determination of secondary structure of RVVB-PLA$_{2}$-I: Circular dichroism spectroscopy 213

7.3 Pharmacological characterisation of RVVB-PLA$_{2}$-I 214
7.3.1 Anticoagulant activity 214
 7.3.1.1 Ca$^{2+}$ clotting time of plasma and determination of plasma phospholipids hydrolysis by GC analysis 214
 7.3.1.2 Prothrombin time test 214
7.3.1.3 Binding of RVVB-PLA$_2$-I with phospholipids 216
7.3.1.4 Binding of RVVB-PLA$_2$-I with blood coagulation factors 219
7.3.1.5 Prothrombin inhibition assay 220
7.3.2 Direct and indirect haemolytic activity 222
7.3.3 *In-vitro* tissue damaging activity 223
7.3.4 Stability of RVVB-PLA$_2$-I at 4 °C 224
7.3.5 Mitochondrial membrane phospholipids hydrolysis and FFAs release 225
7.3.6 Effect of RVVB-PLA$_2$-I on erythrocyte membranes phospholipids hydrolysis 229
7.3.7 Binding study by ELISA 233
7.3.8 Effects of different chemical inhibitors, antivenom and heat inactivation study of RVVB-PLA$_2$-I
7.3.8.1 Effects of chemical modification on PLA$_2$ activity 234
7.3.8.2 Effects of chemical modification on pharmacological activities 235
7.3.8.3 Effect of heating 235
7.3.9 Antibacterial activity 237
7.3.10 *In-vitro* cytotoxicity assay on HT 29 cells 238
7.4 *In-vivo* toxicity assay of RVVB-PLA$_2$-I 240
7.4.1 Lethality and *in-vivo* toxicity 240
7.4.2 Anticoagulant effect 240
7.4.3 Effect on blood cells 240
7.4.4 Effect on serum parameters 243
7.4.5 Histopathological study 245
7.5 Immunological cross reactivity 246
7.5.1 Immunodiffusion 246
7.6 Neutralization by plant extracts 247
7.6.1 Neutralization by AIPLAI 247
7.6.2 Neutralization by *Camellia sinensis*, *Aegle marmelos* and *Xanthium strumarium* 248

CHAPTER VIII: Discussion 252-281
8.1 Importance and justification of the present study 252
8.2 Presence of PLA$_2$ isoenzymes in *Daboia russelli* venom shows functional diversification of venom-gland PLA$_2$ isoenzymes 253
8.3 Purification of three PLA$_2$ enzymes from *Daboia russelli* venom 255
8.3.1 Molecular mass and homogeneity 255
8.4 Biochemical characterization of the three purified RVV-PLA$_2$S 258
8.5 Pharmacological characterization of three purified PLA$_2$S of RVV 260
8.5.1 All the three PLA$_2$s in the present study represent the strong anticoagulant activity

8.5.2 Mechanism of action of the anticoagulant activity
8.5.2.1 Correlation between catalytic and anticoagulant activity
8.5.2.2 Non-enzymatic mechanism of anticoagulant activity: Interaction of PLA$_2$s with plasma phospholipids and coagulation factor Xa

8.5.3 Mechanism of hydrolysis of membrane phospholipids by the RVV-PLA$_2$ enzymes
8.5.3.1 Correlation between catalytic activity and membrane damaging activity
8.5.3.2 Differential hydrolysis of mitochondrial and erythrocyte membrane phospholipids: does it reflect the differences in PLA$_2$-sensitive phospholipids composition of biomembranes?
8.5.3.3 Why do these PLA$_2$s fail to hydrolyze HT-29 cell membrane phospholipids?

8.5.4 PLA$_2$ specific tissue damaging activity
8.5.5 Antibacterial activity
8.5.6 The three PLA$_2$s from RVV are non-lethal to mice

8.6 Weak immunogenic and non-toxic nature, and anticoagulant property of these PLA$_2$s suggest their therapeutic application in blood coagulation disorders

8.7 Assessment for neutralization potency of plant extract in neutralizing the catalytic and pharmacological properties of RVV-PLA$_2$s

8.8 Future prospects of study of snake venom phospholipase A$_2$s

Conclusion

List of References

Publications