Table of Contents

Abbreviations .. vi

List of Figures .. vii

Abstract .. xi

Chapter – 1: Introduction .. 1

1.1. Overview .. 2

1.2. Purpose of Study ... 3

1.3. Aim and Objectives .. 4

1.4. Research Questions .. 5

1.5. Research Methodology ... 5

1.6. Summary ... 6

1.7. Thesis Outline .. 7

Chapter – 2: Pre – Processing .. 9

2.1. Overview ... 10

2.2. Image Processing .. 10

2.2.1. Digital Image Processing ... 14

2.2.2. Fundamental Steps of Image Processing ... 14

2.3. Image Segmentation ... 17
3.1. Overview ..53

3.2. Segmentation and Segmentation Types ...53

3.2.1. Region Based Segmentation ...58

3.2.2. Contour Based Segmentation ..60

3.2.3. Model Based Segmentation ..62

3.2.4. Combined Segmentation ...64

3.3. Errors in Segmentation and Correction Methods...65

3.4 Segmentation Based on the Deformable Models ...65

3.5 Types of Deformable Models ..66

3.5.1 Parametric Active Contours ...67

3.5.3. Behaviour of Traditional Deformable Contours ...69

3.6 Summary ..72

Chapter – 4: Segmentation Techniques ..73

4.1. Overview ...74

4.2. Segmentation Techniques ..74

4.3. GVF Snake ...75

4.3.1. Gradient Vector Flow Field ..78

4.3.2. Generalized Force Balance Equations of GVF ...81
Abbreviations

<table>
<thead>
<tr>
<th>Term</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computed Tomography</td>
<td>CT</td>
</tr>
<tr>
<td>Computer Assisted Tomography</td>
<td>CAT</td>
</tr>
<tr>
<td>Digital Image Processing</td>
<td>DIP</td>
</tr>
<tr>
<td>Digital Signal Processing</td>
<td>DSP</td>
</tr>
<tr>
<td>Fuzzy C Means</td>
<td>FCM</td>
</tr>
<tr>
<td>Inverse Standard Deviation</td>
<td>ISD</td>
</tr>
<tr>
<td>Gradient Vector Flow</td>
<td>GVF</td>
</tr>
<tr>
<td>Magnetic Resonance</td>
<td>MR</td>
</tr>
<tr>
<td>Magnetic Resonance Imaging</td>
<td>MRI</td>
</tr>
<tr>
<td>Partial Differential Equations</td>
<td>PDE</td>
</tr>
<tr>
<td>Position Emission Tomography</td>
<td>PET</td>
</tr>
<tr>
<td>Radio Frequency Ablation</td>
<td>RFA</td>
</tr>
<tr>
<td>Region of Interest</td>
<td>ROI</td>
</tr>
<tr>
<td>Single Photon Emission Computed Tomography</td>
<td>SPECT</td>
</tr>
<tr>
<td>Spatial Fuzzy C Means</td>
<td>SFCM</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>SD</td>
</tr>
<tr>
<td>Unequal Spaced Fast Fourier Transforms</td>
<td>USFFT</td>
</tr>
<tr>
<td>Whole Brain Atlas</td>
<td>WBA</td>
</tr>
</tbody>
</table>
List of Figures

Figure – 1.1: Thesis Outline 08

Figure – 2.1: (a) Image Processing Application at Pixel Level 11
Figure – 2.1: (b) Image Processing Steps 12

Figure – 2.2: Steps Involved in Digital Image Processing 15

Figure – 2.3: Original Image to be Segmented 17

Figure – 2.4: Final Segmented Image 18

Figure – 2.5: (a) Image from Ultrasonography 21

Figure - 2.5 (b): The Liver CT demonstrates Faint Segmented Egg Shell 21

Figure – 2.6: (a) Shows the Radiography with horizontal line marking, (b) Sinogram of Projected data, (c) Convolved Projection Data and (d) Reconstructed Data from Projected Data 23

Figure – 2.7: Image from Computerised Tomography with excellent diagnosis 24

Figure – 2.8: Image from Computerised Tomography 25

Figure – 2.9: Segmentation of MRI Brain Image by replacing 1 with δ function 26

Figure – 2.10: The Slice through a Spine shows after a MRI Scanner shows the bulging disc pressing the Spine nerve that requires surgical intervention 27

Figure – 2.11: SPECT Annular Camera of Brain of three segmented parallel hole rotating Collimator system 29

Figure – 2.12: Image from Single Photon Emission Computed Tomography (SPECT) 29

Figure – 2.13: Reduction of radiation treatment volume using PET is compared with a CT Image (a) Shows the CT Image (b) Shows the PET corrected Image 30

Figure – 2.14: Image from Photon Emission Tomography 31
Figure – 2.15: The Histogram of a uniform noise
Figure – 2.16: (a) Original Image (b) Uniform noise distributed image and (c) the Histogram
Figure – 2.17: Probability Density Function of Gaussian Noise
Figure – 2.18: (a) Original Image (b) Gaussian noise distributed image (c) Histogram
Figure – 2.19: Histogram representation of Salt and Pepper Noise
Figure – 2.20: Image Restoration for (a) 50% noise corrupted image (c) 80% noise corrupted image and (b), (d) Outputs of the applied salt and pepper noise methods
Figure – 2.21: Probability Density Function of Rayleigh Noise
Figure – 2.22: Probability Density Function of Gamma Noise
Figure – 2.23: Summary of different types of Noise and their distributions
Figure – 2.24: Image Denoising Methods Classification
Figure – 2.25: De-noised image with various De-noise methods of Curvelet Transforms (a) Noisy Image (b) CTD (c) HWTD and (d) Pixel fusion methods
Figure – 3.1: (a) Human Image segmented in different ways using manual, automatic and semi-automatic ways
Figure – 3.1: (b) Region mapping
Figure – 3.2: Shows the example for Contour Based Image Segmentation
Figure – 3.3: Shows the comparision of data with specific knowledge in a Model Based Segmentation Process
Figure – 3.4: Shows the example for a Combined Segmentation
Figure – 3.5: Shows the example for a Parametric Active Counter
Figure – 3.6: Convergence of Deformable contour using (a) Traditional potential forces (b) Close-up within the boundary concavity (c) Poor convergence from deformable contour
Figure – 3.7: (a) Shows convergence of deformable contour by using (b) Distance potential forces; and (c) Shows close up within boundary concavity.

Figure – 4.1: Example for GVF Snake Model.

Figure – 4.2: Example for pressure forces driven deformable contours (a) Intensity CT image slice of the left ventricle. (b) Edge detected image. (c) Initial deformable contour. (d)-(f) Deformable contour moving toward the left ventricle boundary, driven by inflating pressure force.

Figure – 4.3: Distance potential force (DPF) field example (a) Close-up of a U-shaped object (b) with boundary concavity and (c) DPF within concavity.

Figure – 4.4: (a) The car plate that has to be segmented and (b) Threshold Segmented Image.

Figure – 4.5: (a) Segmented image (b) Image after Inverse threshold image.

Figure – 4.6: An image after using Divisive Clustering Algorithm Segmenter.

Figure – 4.7: The application of Divisive clustering Algorithm produced the hierarchy of different regions at different levels.

Figure – 4.8: Shown the embedding of a curve as Level set. (a) Single curve (b) Level set function in which the curve is embedded as zero level set (in black colour). (c) Shows the height map of Level set function with zero Level set depicted in black at the corner.

Figure – 4.9: Using Level set from left figure to right figure, zero Level set is splitting into two curves and during the Level set functions will still remain as a valid function.

Figure – 4.10: Shows Cyst form of ultrasound breast image by merging via multiple initial Level set based on contour extraction.

Figure – 4.11: Segmentation of the brain Left to Right and Top to Bottom: Iterations 1, 400, 800, 1200, and 1600.
Figure 4.12: (a) Original image (b) Segmented image with randomly selected level set functions ϕ (c) Segmented image with level set after 50 iterations and (d) 72 iterations

Figure – 5.1: Shows (a) the Actual image and (b) the Segmented image using FCM Clustering Algorithm

Figure – 5.2: Shows (a) the Actual image and (b) the Segmented image using SFCM Clustering Algorithm

Figure – 5.3: Shows (a) the Actual image and (b) the Segmented image using GVF Snake model

Figure – 5.4: Shows (a) the Actual image and (b) the Segmented Image using Level set Algorithm without Re-initialization model

Figure – 6.1: Obtained output of FCM Algorithm with more number of segmented blobs at other than liver area

Figure – 6.2: Obtained output of GVF Snake model with more number of segmented blobs at other than liver area

Figure – 6.3: Obtained output of SFCM Algorithm with reduced number of segmented blobs of liver area

Figure – 6.4: Obtained output of level set without Re-Initialization provides reduced number of segmented blobs of liver area