CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>i-iw</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>v-vi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF PHOTOGRAPHS</td>
<td></td>
<td>viit-ix</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>INTRODUCTION</td>
<td>1-19</td>
</tr>
<tr>
<td>1.1</td>
<td>Tawa dam project</td>
<td>6</td>
</tr>
<tr>
<td>1.2</td>
<td>Selection of the study area</td>
<td>13</td>
</tr>
<tr>
<td>1.3</td>
<td>Location and extent of the study area</td>
<td>13</td>
</tr>
<tr>
<td>1.4</td>
<td>Accessibility</td>
<td>14</td>
</tr>
<tr>
<td>1.5</td>
<td>Period of study</td>
<td>14</td>
</tr>
<tr>
<td>1.6</td>
<td>Review of literatures</td>
<td>17</td>
</tr>
<tr>
<td>1.7</td>
<td>Methodology</td>
<td>17</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>GEOMORPHOLOGY OF THE AREA</td>
<td>20-55</td>
</tr>
<tr>
<td>2.1</td>
<td>Regional physiography</td>
<td>21</td>
</tr>
<tr>
<td>I</td>
<td>Hard rock morphology</td>
<td>24</td>
</tr>
<tr>
<td>II</td>
<td>Alluvial morphology</td>
<td>24</td>
</tr>
<tr>
<td>(i)</td>
<td>Younger terrace</td>
<td>25</td>
</tr>
<tr>
<td>(ii)</td>
<td>Older terrace</td>
<td>25</td>
</tr>
<tr>
<td>(iii)</td>
<td>Piedmont farms and braid plain</td>
<td>25</td>
</tr>
<tr>
<td>2.2</td>
<td>Physiography of the study area</td>
<td>26</td>
</tr>
<tr>
<td>(i)</td>
<td>River terrace (RT)</td>
<td>26</td>
</tr>
<tr>
<td>(ii)</td>
<td>Alluvial plain (AP)</td>
<td>26</td>
</tr>
<tr>
<td>(iii)</td>
<td>Palaeo channel (PC)</td>
<td>26</td>
</tr>
<tr>
<td>(iv)</td>
<td>Valley fills (VF)</td>
<td>26</td>
</tr>
</tbody>
</table>
2.3 Relative relief
2.4 Slope analysis
2.5 Drainage
2.5.1 Morphometric analysis

(i) Stream order
(ii) Stream number (Nu)
(iii) Stream length (L)
(iv) Length ratio
(v) Basin perimeter (P)
(vi) Basin area (A)
(vii) Basin length (L)
(viii) Basin shape
(a) Form factor (Ff)
(b) Basin curcularity (Rc)
(c) Basin elongation (E)
(d) Lemniscate (K)
(ix) Drainage nature
(a) Drainage density (Dd)
(b) Drainage texture
(c) Drainage frequency
(d) Drainage intensity (Di)
(x) Length of overland flow (Lg)
(xi) Bifurcation ratio (Rb)
(xii) Drainage pattern
(a) Dendritic pattern
(b) Sub-parallel pattern
(c) Braided pattern
(d) Sub-Trellis pattern

2.6 Vegetation

CHAPTER 3 HYDROMETEOROLOGY

3.1 Climate

3.2 Temperature

3.3 Evaporation losses

3.4 Humidity

3.5 Wind velocity

3.6 Rainfall

3.7 Relationship of hydromete-orological parameters

CHAPTER 4 GEOLOGY OF THE AREA

4.1 Regional geology

4.1:1 Archaean Super Group

4.1:2 Bijawar group

4.1:3 Vindhyan super group

4.1:4 Gondwana super group

(a) Lower Gondwana

(b) Upper Gondwana

4.1:5 Lameta group

4.1:6 Deccan Trap

4.1:7 Alluvium

4.2 Geology of the study area

4.3 Subsurface geology

4.4 Structure

4.5 Satellite imagery interpretation
4.6 Discussion on lineaments and tectonic activities along Narmada line

CHAPTER 5 SOIL OF THE AREA 105-121
5.1 Soil irrigability 107
5.2 Land irrigability 111
(a) Class I 111
(b) Class II 111
(c) Class III 112
5.3 Soil characteristics 113
5.3.1 Physical characteristics 114
(i) Soil depth and colour 114
(ii) Texture 114
(iii) Water-holding capacity 116
(iv) Permeability and infiltration 117
5.3.2 Chemical characteristics 117
(i) Salinity of soils 117
(ii) pH of soil 117
(iii) Exchangeable cations 118
5.4 Soil erosion 119
5.5 Soil fertility 121

CHAPTER 6 GROUND WATER RESOURCE EVALUATION 122-156
6.1 Occurrence and movement of ground water 124
6.2 Pre-monsoon water table contour map 128
6.2:2 Post-monsoon water table contour map
6.2:3 Water table fluctuation map
6.2:4 Pre-monsoon depth to water table map
6.2:5 Post-monsoon depth to water table map
6.3 Electrical resistivity survey
6.4 Aquifer characteristics
6.4:1 Large diameter well
6.4:2 Small diameter well
6.5 Ground water recharge
6.6 Ground water assessment
6.7 Ground water draft
6.8 Ground water development and management

CHAPTER
7 HYDROCHEMISTRY 157-183
7.1 Establishment of sampling station 159
7.2 Collection of water samples 159
7.3 Analytical procedure 160
7.4 Physico-chemical characteristics of water
7.4:1 Hydrogen ion concentration (pH) 162
7.4:2 Electrical conductivity (EC) 165
7.4:3 Total dissolved solids (T.D.S.) 166
7.4:4 Total hardness 167
7.4:5 Total alkalinity 168
7.4:6 Chloride 168
7.4:7 Sulphate 169
7.4:8 Nitrate 170
7.4:9 Calcium 170
7.4:10 Magnesium 171
7.4:11 Sodium 171
7.4:12 Potassium 172
7.5 Representation of chemical analysis 172
 (i) Piper's trilinear diagram 173
 (ii) Hydrochemical facies 176
A - Cation hydrochemical facies 176
B - Anion hydrochemical facies 177
7.6 Suitability of water for different uses 179
7.6:1 Domestic use 179
7.6:2 Irrigation use 180

CHAPTER 8 ENVIRONMENTAL IMPACT OF IRRIGATION 184-208
8.1 Impacts of Tawa dam site 187
8.2 Impacts at down stream of Tawa dam 193
8.3 Impacts in the Tawa Command Area 194
 8.3:1 Canal system 194
 8.3:2 Soil salinity 195
 8.3:3 Soil erosion 196
 8.3:4 Soil fertility 197
8.3:5 Drainage 197
8.3:6 Water table 198
8.3:7 Water weeds 204
8.3:8 Water quality 204
8.3:9 Fertilizers, pesticides and insecticides 205
8.3:10 Tanks and ponds 206
8.3:11 Human settlement 207
8.3:12 Community health 207

SUMMARY AND CONCLUSION 209-219
REFERENCES 220-246
LOCALITY INDEX 247-251
APPENDICES 252-290
PHOTOGRAPHS 291-304