Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>1.1</td>
<td>Basic picture of polymers</td>
</tr>
<tr>
<td>1.2</td>
<td>Mechanism of polymerization</td>
</tr>
<tr>
<td>1.3</td>
<td>Preparation of polymer thin films</td>
</tr>
<tr>
<td>1.4</td>
<td>Different methods to produce plasma discharge</td>
</tr>
<tr>
<td>1.5</td>
<td>A brief review on electronic properties of polymer thin films</td>
</tr>
<tr>
<td>1.6</td>
<td>Application of polymer thin films</td>
</tr>
</tbody>
</table>

Page

Preface i

CHAPTER 1

INTRODUCTION 1

1.1. Basic picture of polymers 2
Polymerization 2

1.2. Mechanism of polymerization 4

1.3. Preparation of polymer thin films 8
Radiation induced polymerization . Pyrolitic method .
Plasma polymerization .

1.4. Different methods to produce plasma discharge 18

1.5. A brief review on electronic properties of polymer thin films 22
Modes of carrier transport in insulating polymer films .
Photo conductivity and photovoltaic effect in polymer thin films .

1.6. Application of polymer thin films 30
1.7. Aim and scope of present work

References

CHAPTER II

THEORETICAL ASPECTS

2.1. Electronic states of polymers

2.2. Nature of excited states in polymers

2.3. Ionized states and conducting levels in molecular systems

2.4. Electrical properties of polymers

2.5. Dielectric properties in general

 Dielectric relaxation and loss. Various polarization mechanisms.

 Polarization and dielectric losses in thin films.

2.6. Optical absorption in polymers

References

CHAPTER III

EXPERIMENTAL TECHNIQUES

3.1. Experimental techniques for the preparation of M-I-M sandwich structures

 The radio frequency plasma polymerization setup. Electrode
deposition system. Deposition of metal electrodes. Electrical feed throughs.

3.2. The procedure

3.3. Fabrication of metal cell for electrical and dielectric measurements

3.4. Methods of measurements

d.c. electrical conductivity measurements. Measurements of dielectric parameters. Film thickness measurement.

3.5. Experimental method to determine the refractive index ‘n’, extinction coefficient ‘k’ and absorption coefficient ‘α’ of thin films

Theory of method. Experimental method to determine the absorption coefficient. Experimental method to determine band gap energy. Mode of measurement.

References

CHAPTER IV

PLASMA POLYMERIZED FURAN AND LEMONGRASS OIL THIN FILMS - OPTICAL STUDIES

4.1. Experimental techniques

4.2. Growth rate of polymer film formation

4.3. Infrared absorption studies

4.4. Absorption and transmission studies in the UV - VIS - NIR range

4.5. Results and discussion

Growth rate. Polymerization mechanism and structural aspects.
Absorption in UV - VIS range. Transmission through the plasma polymer films and determination of the optical constants n & k

References

CHAPTER V

CONDUCTIVITY STUDIES ON PLASMA POLYMERIZED FURAN FILMS

5.1. Experimental details

5.2. Results and discussion

5.3. Conclusions

References

CHAPTER VI

DIELECTRIC PROPERTIES OF PLASMA POLYMERIZED FURAN

6.1. Experimental details

6.2. Results and discussion

Dielectric parameter ε and tanδ: Their dependence on thickness at a fixed frequency 1 KHz. Behaviour of ε and tanδ in the range of 1 KHz - 30 KHz. Behaviour of ε and tanδ in the frequency range 10 KHz - 1 MHz.
6.3. Dielectric properties - Detailed discussion

6.4. Conclusions

References

CHAPTER VII

CONDUCTION MECHANISM IN PLASMA POLYMERIZED LEMONGRASS OIL FILMS

7.1. Experimental details

7.2. Results and discussion

Current - Voltage characteristics . Temperature effect .

7.3. Conclusions

References

CHAPTER VIII

DIELECTRIC PROPERTIES OF POLYMERIZED LEMONGRASS OIL THIN FILMS

8.1. Experimental details

8.2. Results and discussion

The dielectric parameters ε and tanδ : Their dependence on thickness at a fixed frequency 10 KHz . Behaviour of ε and tanδ in various frequency range .

8.3. Dielectric properties - A detailed discussion

8.4. Conclusions

References
CHAPTER IX

EFFECT OF IODINE DOPING IN PLASMA POLYMERIZED FURAN AND LEMONGRASS OIL FILMS

9.1. Experimental details

9.2. Results and discussion

 - IR absorption studies
 - Absorption in UV - VIS range
 - Electrical conductivity study on Iodine doped plasma polymerized films

9.3. Conclusions

References

CHAPTER X

CONCLUSIONS