DISCUSSION

Aims of the research was to search for association between linked markers and oil content of *Jatropha curcas* seeds through the technique of association mapping for marker assisted selection of high and low yielding genotypes.

The objective of precedence was an individual sample collection. 91 Samples were collected from six different states (representing 10 geographical regions) of India, viz. Gujarat, Rajasthan, Uttar Pradesh, Maharashtra, Tamil Nadu and North India.

9.1 Phenotypic analysis of oil content

Following sample collection was the phenotypic analysis of oil content. Three solvents petroleum ether, hexane and isopropanol were used in four extraction techniques viz. separating funnel, centrifugation, filtration and soxhlet extraction method. Soxhlet extraction method ensued the highest amount of oil. Our findings are supported by Castro-Vargasa *et al.*, 2010, who reported that the highest oil content of Guava seed extract was achieved using soxhlet extraction techniques. In another study, oil from seeds of three wild grape vines were successfully extracted using the Soxhlet technique (Weidner *et al.*, 2012; Khoddami *et al.*, 2013). Moreover, out of the three solvents hexane yielded more oil in percent in comparison to isopropanol and petroleum ether. Similar results were obtained in a study comparing the solvent hexane, ethanol, petroleum ether, isopropanol and carbon tetrachloride for oil extraction from olive cake (Banat *et al.*, 2013). Thus, hexane-soxhlet combination for the extraction was found to yield the highest amount (78.66 ± 0.9 %) of oil content; followed by 59.66 ± 2.5 % from isopropanol and 53.66 ± 1.05 % from petroleum ether. Among the solvents, hexane is considered as the best solvent because it yields maximum oil as compared to other solvents (Sepidar *et al.*, 2009). But, the oil recovered by hexane and isopropanol is slightly yellow in colour. This might pose problems in using the oil for further biodiesel production. Thus, it is better to use petroleum ether for efficient biodiesel production. (Kandpal *et al.*, 1995) also used petroleum ether as a solvent, to extract *Jatropha curcas* oil from whole seed and the kernel. Hence, all the samples in our investigation were
isolated with petroleum ether, since it yields transparent oil as well as appropriate amount for further studies. The oil content for the samples ranged from 18.33 % to 41.83 %. The diversity in oil content of the collected accessions may be related to the fact that this species grows over a wide range of climatic conditions and populations must have experienced marked differences in selective pressure in their natural habitat.

9.2 DNA Isolation from collected Jatropha Samples

The subsequent goal was to isolate DNA from the collected samples. However, prior to DNA isolation from the collected samples a comparative analysis was performed between six already published methods viz., Doyle and Doyle, 1990; Jobes et al., 1995; Dellaporta et al., 1983; Sudheer et al., 2008; Nalini et al., 2004 and Anna Maria et al.-1 and 2, 2001. Dellaporta et al. exhibited the best results in comparison to other six methods with 0.157 O.D. at 260 nm, concentration of 7.85µg/ml and 83.00% purity. However, the Dellaporta et al. method was modified to enhance the quality of the extracted DNA. The buffer to tissue ratio was modified from 1:1 to 3:1 to increase the quality of the DNA. Similarly, a study on the improved DNA extraction protocol from leaf tissues of Phyllanthus emblica Gaertn indicated that DNA of amplifiable quality could be obtained by increasing the ratio of tissue to buffer (Nagarajan et al., 2011). This could provide more exposure of the buffer component to the crushed tissue, consequently, increasing the quality of the DNA. The concentration of SDS was decreased from 10% to 2 % to increase the DNA yield; also reinforced in a study that the absorbance started to decrease when the SDS concentration was more than 2.0% (Guobin et al., 2008). While concentrations of polyvinylpyrrolidone (PVP) in the extraction buffer was increased from 0.1 g to 0.9 g in order to remove excess amounts of polyphenols as oxidized form of polyphenols bind to proteins and DNA to impart brown color to DNA and render it unsuitable for the further applications (Katterman et al., 1983; Guillemaut et al., 1992; Aljanabi et al., 1999). In addition, the incubation time at -20°C in isopropanol was increased from 1.5 hours to overnight incubation which provides more time to precipitate the DNA. Finally, the samples were ground in a mortar & pastel with pre-warmed extraction buffer instead of grinding with liquid nitrogen; thereby preventing further tissue damage. The protocol described by Dellaporta et al., 1983, with minor
Marker assisted selection for high oil yielding varieties in *Jatropha curcas*. Hence, the DNA was isolated from the entire 91 samples of *J curcas* with the modified Dellaporta *et al.*, 1983 method.

Prior to genotyping, for association mapping studies, it is best to select lines to maximize genetic diversity. As it will minimizes pair wise LD between loci and contributes to greater power for association mapping (Yu *et al.*, 2006).

9.3 Development of SSRs primers from EST database of *Jatropha curcas*

Out of many PCR based marker systems microsatellites were used to study the diversity and population genetic studies as the markers were technically simple, high polymorphism and the variations accumulate in accordance of the species evolution (Zana *et al.*, 2002). From identifying relatives to inferring demographic parameters, microsatellites are rapidly replacing the multilocus markers in most applications in population biology and molecular genetics studies (Bowcock *et al.*, 1994, Goldstein *et al.*, 1995, Jarne *et al.*, 1996).

In addition to being highly variable, microsatellites are also densely distributed throughout euarkyotic genomes, making them preferred marker for very high resolution genetic mapping, forensic DNA studies, population genetics and conservation management of biological resources for genome mapping. Moreover, it is also used in hybrid analysis, MAS (Marker Assisted Selection) and QTL (QuantitativeTrait Loci) analysis for economically important trait in many crop species (Dib *et al.*, 1996; Dietrich, 1996; Jarne *et al.*, 1996; Schuler GD, 1996; Knapik, 1998).

The development of SSR (microsatellite) markers from genomic libraries is expensive and inefficient. Computational approaches provide an attractive alternative to conventional laboratory methods for rapid and economical development of SSR markers by utilizing freely available sequences in public databases (Varshney *et al.*, 2002). Therefore, development of SSR markers through data mining has become fast, efficient, and low-cost option for many plants (Eujayli *et al.*, 2004). Though SSRs are markers of
choice in many plant species, only a very limited number of SSR markers are publicly available for *Jatropha curcas*.

We characterized informative SSR markers from a large collection of EST (42,483 ESTs) using EST database of *Jatropha curcas*. A total of 3682 ESTs contained SSRs (8.66% of the total 42,483 ESTs). A relatively higher abundance of SSRs for *Jatropha* ESTs was observed compared to the previous reports for maize (1.4%), barley (3.4%), wheat (3.2%), sorghum (3.6%), rice (4.7%) (Kantety RV *et al.*, 2002), *Medicago truncatula* (3.0%) (Eujayl I *et al.*, 2004) and Peanut (6.8%) species (Liang, 2009).

In this study, total 3682 SSRs were identified i.e, SSRs exist in 8.6 % of EST sequences, in which the mononucleotide repeats formed the largest group (55.7%) consisting of 95.1% A/T and 4.9% G/C motifs. Dinucleotides was the second largest group (30.5%) consisting of 42.5% AG/CT, 17.3% AT/TA, 4.3% AC/TG, 34.8% TC/GA and 1.1% GT/CA motifs. This was followed by trinucleotides (13.2%), tetra-hexanucleotides (0.21%) and pentanucleotides (2 SSRs).

Based on 3682 SSR-containing ESTs, a total of 2236 primers was successfully designed and used for the validation of the amplification in *in silico* condition. All the 2236 primers were *in silico* validated with NetPrimer. From the validation studies, 93 primers does not contain hairpin loops, self-primers and cross primers. Out of which 4 were interrupted EST-SSR primers and the rest 89 were non-interrupted EST-SSR primers.

Designed and *in silico* validated EST-SSR markers from *Jatropha* will enrich the current resource of molecular markers for *Jatropha* community and would be useful for qualitative and quantitative trait mapping, Marker-Assisted Selection, and genetic diversity study in *Jatropha* and other related plant species.

This designed EST SSR markers were used for genitic diversity and population studies of collected *J. curcas* germplasm.
9.4 Diversity estimates using EST SSR markers

The molecular diversity and population analysis in ninety-one accessions of *Jatropha* collected from six states of India was implemented by using forty-eight SSR primer combinations. Among the SSRs studied 33 loci were Genic SSRs designed from EST Database in the present study, 11 EST primers for Acetyl CoA-Transferase (ACCase) unisequence in *Jatropha* were designed in present study and 4 loci were Genomic SSRs taken from the study reported by Sudheer *et al.*, 2009.

With the generated diploid genetic data, summary statistics including the total number of bands, the number of bands per locus, and the polymorphism information content (PIC) were determined based on the data matrix that documented the microsatellite genotyping of each locus. Descriptors of observed genetic diversity, such as total number of alleles observed per locus, the number of alleles per polymorphic locus (i.e. effective alleles), the number of rare alleles per locus (i.e. alleles with frequency lower than 5%), observed heterozygosity (Ho) and gene diversity (expected heterozygosity, He) were calculated. The data were also tested for fixation index and Analysis of Molecular Variance (AMOVA) using GeneAlex software, ver. 6.4 (Peakall *et al.*, 2006).

All (100%) SSR markers were polymorphic for all *Jatropha* accessions and total of 480 polymorphic alleles across the groups were observed. The number of alleles across loci ranged between 5 to 22 with an average number of alleles of 15 and the overall size of amplified products ranged from 940 to 104 bp. The average PIC value was 0.821 and it ranged from 0.5215 (SSR 67) to 0.9941 (SSR 18). The high levels of PIC obtained in these studies suggest that polymorphic EST SSR markers in *Jatropha curcas* are generally very informative. Fst value ranged from 0.26 to 0.069 with the mean of 0.112 which shows high to low variation and the overall genetic diversity in terms of Shannon’s information index was 1.964 ± 0.031. The Observed heterozygosity (Ho) ranged from 0.0 to 1.0, with a mean of 0.21. High levels of heterozygosity were observed in the *Jatropha curcas* genotypes, mean expected Heterozygosity/gene diversity (He) was observed to be 0.820 with values ranging from 0.906 (SSR18) and 0.602 (SSR62) respectively. High heterozygosity refers to high genetic variability suggesting that the *Jatropha* germplasm
are more variable and share less alleles among themselves, proposing comparatively broad genetic base.

Fixation statistics were produced for individual SSRs and groups of germplasm and FST values ranged from 0.041 to 0.123 which indicates the majority of variation is found within population rather than between populations. Average fixation indices over the populations, FIT = 0.977, FST = 0.112 and FIS = 0.975 is indicative of high level of outcrossing by high inbreeding coefficient and moderate differentiation among the population. The mean Nm value for the accessions was found to be 2.25, suggesting gene flow within studied populations, which is understandable due to the cross-pollinating nature of Jatropha curcas.

Analysis of Molecular Variance (AMOVA) analysis accounted for 5% of the overall genetic diversity present within these populations; the remaining 95% of the genetic variability was explained by the differences among genotypes within populations, although the variation observed among populations was statistically significant. The high within-cultivar variability found in this study is consistent with other studies of cross pollinating plants (Rajasekar S. et al., 2005).

Various population genetic parameters assessed for the sample population exploited on this project shows that EST microsatellite markers designed and characterized can be employed efficiently in breeding programs for genetic improvement of the species through Marker Assisted Selection, for further genetic resource management and help in making the J. curcas as potential crop with superior agronomical traits.

9.5 Genetic Diversity and Population Structure Analysis

Population structure contributes to LD between unlinked loci, producing false positive results and must be accounted for to reduce type I error rate in association mapping. To justify population structure there are two methods available: a model-based and distance based. The distance based method encompasses a unweighted neighbor joining tree constructed based on the genotypic data of SSR alleles, considering the 91 Jatropha curcas accessions grouped in the final clusters by DARwin software version 5.0.158.
Marker assisted selection for high oil yielding varieties in Jatropha curcas (Perrier et al., 2006). The dendrogram delineated individual samples into 9 clusters (5 major Cluster I-V and 3 sub cluster each in Cluster II & V (Figure 6.7).

While, the model based approach estimates population structure employing Bayesian model-based clustering algorithm implemented in STRUCTURE 2.3.1 (Pritchard et al., 2000). STRUCTURE assigns individuals to K populations based on their multilocus genotypes. The bar plot generated by STRUCTURE allocated individual samples into 10 clusters (Figure 9.1 a & b). Hence, there are ten real populations according to STRUCTURE.

Comparing the two models, 5 clusters created by STRUCTURE resemble clusters generated by DARwin. Cluster 2 (K=2) in STRUCTURE is similar to cluster I in DARwin proportionated by individual samples from Gujarat and Rajasthan; cluster 4 (K=4) in STRUCTURE resemble cluster III in DARwin membered by samples from Rajasthan and North India; cluster 5 (k=5) in STRUCTURE is analogous to cluster Iib in DARwin; cluster populated by Samples from Uttarakhand and Rajasthan; cluster 8 in STRUCTURE is comparable to cluster Va in DARwin occupied by samples from Maharashtra, Tamil Nadu and Rajasthan and cluster 9 in STRUCTURE is identical to cluster IV in DARwin assembled by samples from Maharashtra and Rajasthan (Figure 9.1 a, b & Figure 6.7).

The remainder of the clusters from the STRUCTURE and DARwin do not bear resemblance. In fact several differences were noted between distance and model-based estimates of population structure. For instance, grouping according to DARwin combine all samples from Gujarat into Cluster I; however, STRUCTURE delineate the samples into three clusters viz. cluster 2, 3 and 6 (Figure 9.1 a, b & Figure 6.7). In addition, DARwin allocates the samples from Tamil Nadu and North India into two different clusters viz. cluster Vb and Vc respectively, originating from a single branch.
Figure 9.1: Clustering the population based on population diversity & population structure.

a: Bar plot for K = 10 sorted by population ID generated by STRUCTURE
b: Bar plot for K = 10 sorted by Q (clusters) generated by STRUCTURE

GJ = Gujarat; RJ = Rajasthan; UP = Uttar Pradesh; MH = Maharashtra; TN = Tamil Nadu, NI = North India
However, STRUCTURE combines both clusters into cluster 7 (Figure 9.1 a, b & Figure 6.7). Moreover in DARwin, clusters IIa and IIc are populated by samples from Uttar Pradesh and North India; however, STRUCTURE allocates samples from Rajasthan in addition to Uttar Pradesh and North India into cluster 1 and cluster 10. Therefore, there is limited scope to differentiate between the two clusters (Figure 9.1 a, b & Figure 6.7).

According to our results, the model-based approach using STRUCTURE is a better estimate of population structure than the distance-based approach employing DARwin to create a phylogenetic tree. With samples from Gujarat, unlike DARwin, STRUCTURE assigns them into more than one cluster; also samples from other regions are allocated to more than one cluster. Hence, it proves the existence of admixture in the given populations. Similarly, Pritchard et al., 2000 indicated that Model-based estimates of population structure are superior to distance-based estimates as individual membership can be probabilistically assigned and allows modeling of admixture and assignment of individuals to more than one subpopulation (Reimer, 2009). In further support, Vigouroux et al., 2008 stated that phylogenetic analysis alone is ill suited to uncover the reticulate pattern of evolution expected to result from this type of introgression pattern, because in a bifurcating dendrogram, the admixed material will often appear to have been derived from one or the other source population, but not both. In such cases, structure analysis is complementary.

Furthermore to study the population structure, Principal Coordinate Analysis was performed based on genetic distance matrix using DARwin software (Perrier et al., 2006). The X-axis (Coordinate 1) explains 44.56 % variance and the Y-axis explains (Coordinate 2) 21.29 % variance in the samples for SSR markers (Figure 6.8a). The genetic divergence among the samples observed was identical to phylogenetic tree assortment (Figure 6.7). Ouma et al., 2011 stated that the PCoA approach in contrast to the Bayesian assignment algorithm (Figure 9.1a & b) does not make any assumptions about Linkage Disequilibrium and allow for a visual assessment of the degree to which populations differ from each other. Considering this assumption, we found that the samples have been clustered according to their geographical regions rather than their oil content. Samples with low oil content and high oil content were grouped into the same
clusters. Hence, if we summon both the model and PCoA analysis, it can be concluded that sample are divided into five main clusters and subdivided into 10 different clusters and they bear moderate population structure with admixture within the population.

9.6 Association Mapping for Marker- Trait association

Once population structure has been accounted for, the final step of the association analysis can be conducted. The Association analysis was performed using TASSEL version 2.1 (Bradbury et al., 2007). Two approaches were executed in search for associations viz. General Linear Model (GLM) and Mixed Linear Model (MLM). The GLM approach estimated three associated markers SSR 42, SSR-53 and SSR-23, While MLM approach estimated four associated markers SSR 42, SSR-53, SSR-23 and SSR 56. The p-values for all the markers in the MLM approach were lower than the GLM approach. In most studies, for instance conducted on tomatoes (Ranc et al., 2012), common bean (Galeano et al., 2012), spring wheat (Yu et al. 2011), the p value were lower in GLM approach. However, we encountered one study where the MLM approach established lower p-values that GLM (Dhanapal et al., 2013). Furthermore, the number of associations in our study in MLM approach exceeded the GLM approach. The rationality of attaining higher number of associations in MLM in comparison to GLM has been reinforced in the user manual of the software TASSEL 2.1 (Bradbury et al., 2007); it states that MLM has higher statistic power than GLM and should detect more assertions in case they are valid. Thus, MLM approach is more preferred in association mapping studies, since GLM does not consider co-ancestry (kinship or relatedness) as a co-factor, and therefore the rate of false-positives is inflated by using this method (Galeano et al., 2012). MLM approach provided stronger association for the same markers in contrast to GLM. This confirms that the involvement of population structuring and kinship relationships among analyzed forms improves the resolution of association mapping (Niedziela et al., 2012).

Two markers SSR-53 and SSR-56 out of the four significantly associated with oil content were annotated by Costa et al., 2010. Contig 655 encompasses 5 unisequences; SSR-53 with Genebank accession number GJCCJC2047F01.b and SSR-56 with Genebank
accession number GJCCJC2045H12.b1 are two of the unisequences found to have acetyl CoA carboxylase activity (Costa et al., 2010). Acetyl CoA carboxylase is a rate limiting step in fatty acid biosynthesis (Turnham et al., 1982); Acetyl-CoA carboxylase catalyzes the carboxylation of acetyl-CoA to malonyl-CoA (Podkowiński et al., 2011).

Hence, it proves the importance of SSR-53 and SSR-56 markers in oil biosynthesis. SSR-53, according to the sequence submitted by Da Silva MJ, one of the authors of Costa et al., 2010, has a putative identity to the Phytoalexin Deficient 4 (PAD4) in Arabidopsis thaliana. PAD4 encode a lipase-like gene that is important for salicylic acid signaling; specifically share sequence similarity to triacyl glycerol lipases and other esterases for fatty acid breakdown in oil biosynthesis pathway (Jirage et al., 1999). Thus, SSR-53 evidently exhibited association to the oil content trait. Subsequently, SSR-56 in addition to acetyl-CoA carboxylase activity demonstrates putative identity to the inducer of CBF expression 1 (ICE1) protein. ICE1 is an upstream transcription factor that regulates the transcription of CBF genes in cold (Chinnusamy et al., 2003). The expression of CBF family of transcription factors is triggered in cold temperatures, which in turn activate many downstream genes that confer chilling and freezing tolerance to plants (Chinnusamy et al., 2003). The ICE1 mutation blocks the expression of CBF3 and decreases the expression of many genes downstream of CBFs (Chinnusamy et al., 2003).

SSR-42 has been annotated to gene that PPPDE (Permuted Papain fold Peptidases of DsRNA viruses and Eukaryotes) thiol peptidase protein family. In Eukaryotes, these protein function in deubiquitination of conserved proteins involved in key cellular functions. Hence, the deubiquitination and peptidase functions can suggest its role in activation of important enzymes involved in oil biosynthesis. While, SSR-23 has not been annotated to a particular family of proteins, however, it is conserved region of hypothetical protein according to BLAST2Go.

Moreover, all the four associated markers sequence depicted the presence of SSR markers. Consequently, the presence of SSRs in the transcripts of genes suggests that they might have a role in gene expression or function (Varshney et al., 2005). Furthermore, completely associated EST-SSR markers or even responsible for a particular targeted phenotypic trait can contribute to ‘direct allele selection’ correlated to
a trait of interest (Varshney et al., 2005). Hence, our identification of four molecular markers, SSR 23, SSR 42, SSR 53 and SSR 56, that are tightly linked to the trait of oil content among the *Jatropha curcas* accessions will reduce the need for field-based screening of high and low oil yielding *Jatropha* seeds and accelerate enduring plantations of *Jatropha curcas*.
CHAPTER 9: Discussion

9.7 REFERENCES

Xuanqiang Liang, Xiaoping Chen, Yanbin Hong, Haiyan Liu, Guiyuan Zhou, Shaoxiong Li and Baozhu Guo (2009) Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species. BMC Plant Biology 9:35