TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 GENERAL

1.2 SHEET HYDROFORMING

1.3 TUBE HYDROFORMING

1.4 INCONEL - NICKEL CHROMIUM ALLOY 625

2 LITERATURE REVIEW

2.1 INTRODUCTION

2.2 REVIEW OF LITERATURE ON SHEET HYDROFORMING

2.3 REVIEW OF LITERATURE ON TUBE HYDROFORMING

2.4 SUMMARY OF LITERATURE REVIEW

20
<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>RESEARCH OBJECTIVES</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>INTRODUCTION</td>
<td>21</td>
</tr>
<tr>
<td>3.2</td>
<td>SUMMARY OF RESEARCH OBJECTIVES</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>EXPERIMENTAL WORK</td>
<td>27</td>
</tr>
<tr>
<td>4.1</td>
<td>INTRODUCTION</td>
<td>27</td>
</tr>
<tr>
<td>4.2</td>
<td>EXPERIMENTAL APPARATUS - SHEET HYDROFORMING</td>
<td>27</td>
</tr>
<tr>
<td>4.3</td>
<td>TARGETED EXPERIMENTS - SHEET HYDROFORMING</td>
<td>34</td>
</tr>
<tr>
<td>4.4</td>
<td>EXPERIMENTAL WORK - SHEET HYDROFORMING</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>4.4.1 Sheet Metal Properties and Blank Sizes</td>
<td>36</td>
</tr>
<tr>
<td>4.5</td>
<td>EXPERIMENTAL APPARATUS - TUBE HYDROFORMING</td>
<td>42</td>
</tr>
<tr>
<td>4.6</td>
<td>TARGETED EXPERIMENTS - TUBE HYDROFORMING</td>
<td>46</td>
</tr>
<tr>
<td>4.7</td>
<td>EXPERIMENTAL WORK - TUBE HYDROFORMING</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>4.7.1 T-Shape Protrusion Forming</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>NUMERICAL ANALYSIS</td>
<td>53</td>
</tr>
<tr>
<td>5.1</td>
<td>INTRODUCTION</td>
<td>53</td>
</tr>
<tr>
<td>5.2</td>
<td>FEA OF SHEET HYDROFORMING</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>5.2.1 The DEFORM System</td>
<td>54</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>5.2.2</td>
<td>FEM Model</td>
<td>55</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Material Modeling</td>
<td>58</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Material Representation</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>(Constitutive equations)</td>
<td></td>
</tr>
<tr>
<td>5.2.5</td>
<td>Geometrical Effects</td>
<td>61</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Post Processing of the Results</td>
<td>61</td>
</tr>
<tr>
<td>5.2.7</td>
<td>Summary</td>
<td>63</td>
</tr>
<tr>
<td>5.3</td>
<td>FEA OF TUBE HYDROFORMING</td>
<td>63</td>
</tr>
<tr>
<td>5.3.1</td>
<td>FEA Commercial Code:</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>HyperForm</td>
<td></td>
</tr>
<tr>
<td>5.3.2</td>
<td>Material Modeling</td>
<td>69</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Boundary Conditions</td>
<td>70</td>
</tr>
<tr>
<td>5.3.4</td>
<td>RADIOSS Solver - Procedure</td>
<td>72</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Summary</td>
<td>72</td>
</tr>
<tr>
<td>6</td>
<td>RESULTS AND DISCUSSION</td>
<td>76</td>
</tr>
<tr>
<td>6.1</td>
<td>INTRODUCTION</td>
<td>76</td>
</tr>
<tr>
<td>6.2</td>
<td>SHEET HYDROFORMING</td>
<td>76</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Conventional Forming</td>
<td>76</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Constant Fluid Pressure</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Applied to One Side of Sheet</td>
<td></td>
</tr>
<tr>
<td>6.2.3</td>
<td>Varying Fluid Pressure</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Applied to One Side of Sheet</td>
<td></td>
</tr>
<tr>
<td>6.2.4</td>
<td>Fluid Pressure Applied to</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Work as Blank Holding Force</td>
<td></td>
</tr>
<tr>
<td>6.2.5</td>
<td>Failure Criteria</td>
<td>88</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>6.2.6</td>
<td>Effect of Process Parameters on the Forming Performance</td>
<td>89</td>
</tr>
<tr>
<td>6.2.6.1</td>
<td>Design of experiments</td>
<td>89</td>
</tr>
<tr>
<td>6.2.6.2</td>
<td>S/N analysis</td>
<td>91</td>
</tr>
<tr>
<td>6.2.6.3</td>
<td>Analysis of variance (ANOVA)</td>
<td>92</td>
</tr>
<tr>
<td>6.2.6.4</td>
<td>DOE results</td>
<td>94</td>
</tr>
<tr>
<td>6.3</td>
<td>TUBE HYDROFORMING</td>
<td>96</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Axial Feeding</td>
<td>97</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Internal Pressure Limits</td>
<td>98</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Counter Punch Force</td>
<td>100</td>
</tr>
<tr>
<td>6.3.4</td>
<td>FEA Simulation</td>
<td>101</td>
</tr>
<tr>
<td>6.3.4.1</td>
<td>FEA results</td>
<td>102</td>
</tr>
<tr>
<td>6.3.4.2</td>
<td>Discussion</td>
<td>110</td>
</tr>
<tr>
<td>6.3.4.3</td>
<td>Wall thickness distributions</td>
<td>111</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Experimental results</td>
<td>115</td>
</tr>
<tr>
<td>6.3.5.1</td>
<td>Effect of tube length on bulge ratio</td>
<td>119</td>
</tr>
<tr>
<td>7</td>
<td>CONCLUSIONS AND SCOPE FOR FUTURE WORK</td>
<td>122</td>
</tr>
<tr>
<td>7.1</td>
<td>CONCLUSIONS</td>
<td>122</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Sheet Hydroforming</td>
<td>122</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Tube Hydroforming</td>
<td>124</td>
</tr>
<tr>
<td>7.2</td>
<td>SCOPE FOR FUTURE WORK</td>
<td>125</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>LIST OF PUBLICATIONS</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>VITAE</td>
<td>134</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Chemical composition (Weight %)</td>
<td>6</td>
</tr>
<tr>
<td>1.2</td>
<td>Physical properties</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Mechanical properties at room temperature</td>
<td>7</td>
</tr>
<tr>
<td>4.1</td>
<td>Physical properties of Inconel 625</td>
<td>36</td>
</tr>
<tr>
<td>4.2</td>
<td>Mechanical properties of Inconel 625</td>
<td>36</td>
</tr>
<tr>
<td>5.1</td>
<td>Property parameters</td>
<td>59</td>
</tr>
<tr>
<td>5.2</td>
<td>Material property of Inconel alloy 625 for anisotropic model</td>
<td>60</td>
</tr>
<tr>
<td>5.3</td>
<td>HyperForm: Meshing details used for tube hydroforming process</td>
<td>67</td>
</tr>
<tr>
<td>5.4</td>
<td>Material performance parameters for tube hydroforming</td>
<td>69</td>
</tr>
<tr>
<td>6.1</td>
<td>Forming parameters selected for study and their levels</td>
<td>90</td>
</tr>
<tr>
<td>6.2</td>
<td>Taguchi’s L(_9) orthogonal array (three parameters/three levels)</td>
<td>90</td>
</tr>
<tr>
<td>6.3</td>
<td>Thinning ratio values and S/N ratio (three parameters/three levels)</td>
<td>91</td>
</tr>
<tr>
<td>6.4</td>
<td>Forming parameters and average S/N ratio</td>
<td>92</td>
</tr>
<tr>
<td>6.5</td>
<td>ANOVA for thinning ratio</td>
<td>94</td>
</tr>
<tr>
<td>6.6</td>
<td>Taguchi’s L(_9) orthogonal array (two parameters/three levels)</td>
<td>95</td>
</tr>
<tr>
<td>TABLE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>6.7</td>
<td>Thinning ratio and its S/N ratio (two parameters/three levels)</td>
<td>96</td>
</tr>
<tr>
<td>6.8</td>
<td>Bulge ratio and S/N ratio</td>
<td>120</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Schematic of sheet hydroforming</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Generic curve showing optimum fluid pressure-punch stroke path for sheet hydroforming</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>The principle of tube hydroforming</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Generic curve showing working range for tube hydroforming</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>The division of regions</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Hydroforming limit predicted from diffuse necking criterion</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>The forming limit diagram obtained experimentally from bulge tests</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>Generic curve demonstrating the optimum fluid pressure-punch stroke path</td>
<td>22</td>
</tr>
<tr>
<td>3.2</td>
<td>The limits and working range in tube hydroforming</td>
<td>24</td>
</tr>
<tr>
<td>4.1</td>
<td>Experimental apparatus used for sheet hydroforming of cylindrical cups</td>
<td>28</td>
</tr>
<tr>
<td>4.2</td>
<td>Schematic of punch travel - fluid pressure interface</td>
<td>29</td>
</tr>
<tr>
<td>4.3</td>
<td>Arrangement of PRV and DAQ</td>
<td>30</td>
</tr>
<tr>
<td>4.4</td>
<td>Block diagram for control panel used in LabVIEW</td>
<td>31</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>4.5</td>
<td>Block diagram for pressure evaluation used in LabVIEW</td>
<td>32</td>
</tr>
<tr>
<td>4.6</td>
<td>Sample snapshot of pressure travel diagram obtained from LabVIEW</td>
<td>33</td>
</tr>
<tr>
<td>4.7</td>
<td>Snapshot of control panel to communicate to DAQ</td>
<td>33</td>
</tr>
<tr>
<td>4.8</td>
<td>Experimental test set-up for sheet hydroforming</td>
<td>35</td>
</tr>
<tr>
<td>4.9</td>
<td>Successfully formed cups</td>
<td>37</td>
</tr>
<tr>
<td>4.10(a)</td>
<td>Wrinkled cups due to insufficient initial pressure</td>
<td>37</td>
</tr>
<tr>
<td>4.10(b)</td>
<td>Failed cylindrical cups due to fracture</td>
<td>38</td>
</tr>
<tr>
<td>4.11</td>
<td>Chamber pressure versus punch travel ((t_o=0.5 \text{ mm}))</td>
<td>39</td>
</tr>
<tr>
<td>4.12</td>
<td>Chamber pressure versus punch travel ((t_o=1 \text{ mm}))</td>
<td>39</td>
</tr>
<tr>
<td>4.13</td>
<td>Chamber pressure versus punch travel ((t_o=1.5 \text{ mm}))</td>
<td>40</td>
</tr>
<tr>
<td>4.14</td>
<td>Drawing load versus punch travel ((t_o=0.5 \text{ mm}))</td>
<td>40</td>
</tr>
<tr>
<td>4.15</td>
<td>Drawing load versus punch travel ((t_o=1.5 \text{ mm}))</td>
<td>41</td>
</tr>
<tr>
<td>4.16</td>
<td>Distribution of thickness thinning ratio ((t_o=1.5 \text{ mm}))</td>
<td>41</td>
</tr>
<tr>
<td>4.17</td>
<td>Distribution of thickness thinning ratio ((t_o=1 \text{ mm}))</td>
<td>42</td>
</tr>
<tr>
<td>4.18</td>
<td>Experimental apparatus used for tube hydroforming</td>
<td>43</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>4.19</td>
<td>Fluid pressure control unit used for tube hydroforming</td>
<td>44</td>
</tr>
<tr>
<td>4.20</td>
<td>Tooling for tube hydroforming</td>
<td>44</td>
</tr>
<tr>
<td>4.21</td>
<td>Machine feed rod used for tube hydroforming</td>
<td>45</td>
</tr>
<tr>
<td>4.22</td>
<td>Exploded view of the 3D CAD model of the tooling along with fixture and machine feed rod</td>
<td>46</td>
</tr>
<tr>
<td>4.23</td>
<td>Loading path for T-Shape protrusion forming (Axial feeding=88 mm; Chamber pressure=90 MPa)</td>
<td>49</td>
</tr>
<tr>
<td>4.24</td>
<td>Loading path for T-Shape protrusion forming (Axial feeding=81 mm; Chamber pressure=115 MPa)</td>
<td>50</td>
</tr>
<tr>
<td>4.25</td>
<td>Products of T-shape protrusion forming</td>
<td>51</td>
</tr>
<tr>
<td>4.26</td>
<td>Thickness distribution of the formed part</td>
<td>52</td>
</tr>
<tr>
<td>5.1</td>
<td>DEFORM 3D: Full 3-D model created for sheet hydroforming process with a circular punch and blank</td>
<td>56</td>
</tr>
<tr>
<td>5.2</td>
<td>DEFORM 3D: Circular blank with mesh</td>
<td>56</td>
</tr>
<tr>
<td>5.3</td>
<td>DEFORM 3D: General procedure for analysis</td>
<td>57</td>
</tr>
<tr>
<td>5.4</td>
<td>Anisotropic material model - Numerical simulation result showing wrinkles</td>
<td>60</td>
</tr>
<tr>
<td>5.5</td>
<td>Geometrical effects on wrinkling</td>
<td>61</td>
</tr>
<tr>
<td>5.6</td>
<td>Formed part in simulation showing displacement plot</td>
<td>62</td>
</tr>
<tr>
<td>5.7</td>
<td>Experimental and numerical values of punch force Vs displacement</td>
<td>62</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>5.8</td>
<td>Distribution of the effective stress in different forming stages</td>
<td>63</td>
</tr>
<tr>
<td>5.9</td>
<td>Procedural steps followed and tools used in FEA of tube hydroforming</td>
<td>64</td>
</tr>
<tr>
<td>5.10</td>
<td>Sequence of interfacing steps followed in CAE environment</td>
<td>65</td>
</tr>
<tr>
<td>5.11</td>
<td>HyperForm: 3-D Solid models created for tube hydroforming process</td>
<td>66</td>
</tr>
<tr>
<td>5.12</td>
<td>HyperForm: 3-D models with meshing for tube hydroforming process</td>
<td>68</td>
</tr>
<tr>
<td>5.13</td>
<td>Typical loading cycle used for FEA</td>
<td>70</td>
</tr>
<tr>
<td>5.14</td>
<td>General steps for HyperForm solver file generation</td>
<td>70</td>
</tr>
<tr>
<td>5.15</td>
<td>Sequence for HyperForm axial feeding analysis</td>
<td>71</td>
</tr>
<tr>
<td>5.16</td>
<td>HyperForm: Axial feeding boundary condition</td>
<td>71</td>
</tr>
<tr>
<td>6.1</td>
<td>Punch velocity profile - when no fluid pressure is applied</td>
<td>76</td>
</tr>
<tr>
<td>6.2</td>
<td>Conventional forming - drawing load Vs punch travel (D_o=130 \text{ mm}; t_o=1.5 \text{ mm}; d_o=50 \text{ mm})</td>
<td>77</td>
</tr>
<tr>
<td>6.3</td>
<td>Conventional forming - drawing load Vs punch travel (D_o=130 \text{ mm}; t_o=0.5 \text{ mm}; d_o=50 \text{ mm})</td>
<td>78</td>
</tr>
<tr>
<td>6.4</td>
<td>Punch displacement profile for FEA - with fluid pressure applied to one side of sheet</td>
<td>79</td>
</tr>
<tr>
<td>6.5</td>
<td>FEA-Failure prediction at the edges for a constant pressure level of 100 MPa</td>
<td>79</td>
</tr>
<tr>
<td>6.6</td>
<td>Experimental work-Failure with fluid pressure applied to one side of sheet</td>
<td>80</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>6.7</td>
<td>Drawing load versus punch travel for the 100 MPa constant fluid pressure</td>
<td>80</td>
</tr>
<tr>
<td>6.8</td>
<td>Numerical results of drawing load versus punch travel for Inconel at constant fluid pressure applied to one side of the sheet</td>
<td>81</td>
</tr>
<tr>
<td>6.9</td>
<td>Experimental and numerical results of drawing load versus punch travel for Inconel at constant fluid pressure applied to one side of the sheet</td>
<td>81</td>
</tr>
<tr>
<td>6.10</td>
<td>Component shape comparison between hydroforming and conventional forming</td>
<td>82</td>
</tr>
<tr>
<td>6.11</td>
<td>Experimentally and numerically determined upper limit of the optimum fluid pressure-punch stroke path for the sheet hydroforming process</td>
<td>83</td>
</tr>
<tr>
<td>6.12</td>
<td>Varying fluid pressure profile</td>
<td>84</td>
</tr>
<tr>
<td>6.13</td>
<td>Drawing load versus punch travel for varying fluid pressure</td>
<td>84</td>
</tr>
<tr>
<td>6.14</td>
<td>Pressure profile for different initial blank to punch diameter ratios</td>
<td>86</td>
</tr>
<tr>
<td>6.15</td>
<td>Comparison of D_0/d_0 ratio and maximum drawing load</td>
<td>87</td>
</tr>
<tr>
<td>6.16</td>
<td>Effect of fluid pressure as blanking holding force on wrinkling</td>
<td>87</td>
</tr>
<tr>
<td>6.17</td>
<td>Forming Limit Diagram</td>
<td>88</td>
</tr>
<tr>
<td>6.18</td>
<td>Effect of forming parameters on the thinning ratio</td>
<td>92</td>
</tr>
<tr>
<td>6.19</td>
<td>Percentage contribution of forming parameters on the thinning ratio</td>
<td>94</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>6.20</td>
<td>Geometric parameters used for the T-shape</td>
<td>98</td>
</tr>
<tr>
<td>6.21</td>
<td>Internal pressure limits and linear axial feed curves</td>
<td>100</td>
</tr>
<tr>
<td>6.22</td>
<td>Counter punch displacement curve for FEA simulation</td>
<td>100</td>
</tr>
<tr>
<td>6.23</td>
<td>Loading path of internal pressure</td>
<td>103</td>
</tr>
<tr>
<td>6.24</td>
<td>FEA results for free forming simulation (Pressure=115 MPa)</td>
<td>104</td>
</tr>
<tr>
<td>6.25</td>
<td>FEA results - free forming of tubular blank at various internal pressures (Deformed shape as a displacement plot)</td>
<td>105</td>
</tr>
<tr>
<td>6.26</td>
<td>FEA results for - Internal pressure 80 MPa and axial feed 75 mm</td>
<td>106</td>
</tr>
<tr>
<td>6.27</td>
<td>FEA results for - Internal pressure 110 MPa and axial feed 80 mm</td>
<td>107</td>
</tr>
<tr>
<td>6.28</td>
<td>FEA results for - Internal pressure 120 MPa and axial feed 85 mm</td>
<td>108</td>
</tr>
<tr>
<td>6.29</td>
<td>FEA results - T-shape protrusion at various internal pressure and axial feed combinations (Deformed shape as a displacement plot)</td>
<td>109</td>
</tr>
<tr>
<td>6.30</td>
<td>The wall thickness distribution</td>
<td>112</td>
</tr>
<tr>
<td>6.31</td>
<td>Thinning ratio Vs Bulge ratio for different punch strokes</td>
<td>113</td>
</tr>
<tr>
<td>6.32</td>
<td>Bulge ratio Vs % reduction in tube length</td>
<td>113</td>
</tr>
<tr>
<td>6.33</td>
<td>FLD: Failure and distribution of strains</td>
<td>114</td>
</tr>
<tr>
<td>6.34</td>
<td>Optimal process window for tube hydroforming</td>
<td>115</td>
</tr>
<tr>
<td>6.35</td>
<td>Loading path for T-Shape protrusion forming</td>
<td>116</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>6.36</td>
<td>Experimentally formed parts</td>
<td>117</td>
</tr>
<tr>
<td>6.37</td>
<td>Thinning ratio between simulation and experiment</td>
<td>117</td>
</tr>
<tr>
<td>6.38</td>
<td>Tube deformed geometry: Experimental Vs FEA simulation</td>
<td>118</td>
</tr>
<tr>
<td>6.39</td>
<td>Bulge ratio Vs % reduction in tube length: Experimental Vs FEA simulation</td>
<td>119</td>
</tr>
<tr>
<td>6.40</td>
<td>Comparison between axial feed and bulge height</td>
<td>121</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS AND ABBREVIATIONS

SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>r/R</td>
<td>anisotropy parameter</td>
</tr>
<tr>
<td>R_{0^\circ}, R_{45^\circ}, R_{90^\circ}</td>
<td>anisotropy parameter at 0(^\circ), 45(^\circ) and 90(^\circ) to the rolling direction</td>
</tr>
<tr>
<td>\sigma_f</td>
<td>flow stress</td>
</tr>
<tr>
<td>\varepsilon/\varepsilon_p</td>
<td>plastic strain</td>
</tr>
<tr>
<td>\dot{\varepsilon}</td>
<td>strain rate</td>
</tr>
<tr>
<td>k</td>
<td>strength coefficient</td>
</tr>
<tr>
<td>\sigma</td>
<td>stress</td>
</tr>
<tr>
<td>\sigma_u</td>
<td>ultimate stress</td>
</tr>
<tr>
<td>n</td>
<td>work hardening exponent</td>
</tr>
<tr>
<td>\sigma_y</td>
<td>yield stress</td>
</tr>
</tbody>
</table>

ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Statistical Analysis of Variance</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer Aided Design</td>
</tr>
<tr>
<td>CAE</td>
<td>Computer Aided Engineering</td>
</tr>
<tr>
<td>DAQ</td>
<td>Data Acquisition Card</td>
</tr>
<tr>
<td>DOE</td>
<td>Design of Experiments</td>
</tr>
<tr>
<td>FEA</td>
<td>Finite Element Analysis</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite Element Method</td>
</tr>
<tr>
<td>FLD</td>
<td>Forming Limit Diagram</td>
</tr>
<tr>
<td>IGES</td>
<td>Initial Graphics Exchange Specification</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>LabVIEW</td>
<td>Laboratory Virtual Instrumentation Engineering Workbench</td>
</tr>
<tr>
<td>LVDT</td>
<td>Linear Variable Differential Transducer</td>
</tr>
<tr>
<td>PRV</td>
<td>Pressure Relief Valve</td>
</tr>
<tr>
<td>S/N ratio</td>
<td>Signal-to-Noise ratio</td>
</tr>
</tbody>
</table>