List of Figures

<table>
<thead>
<tr>
<th>Figure No</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 2.1</td>
<td>GIT targets, formulation principles, opportunities and applications</td>
<td>15</td>
</tr>
<tr>
<td>Fig. 2.2</td>
<td>Schematic transverse sections of a Peyer's patch lymphoid follicle and overlying follicle-associated epithelium (FAE), depicting M cell transport of particulate delivery vehicles</td>
<td>16</td>
</tr>
<tr>
<td>Fig. 2.3</td>
<td>Mechanism of uptake of orally administered NPs: (I) M cells of the PP, (II) enterocytes, and (III) GALT</td>
<td>17</td>
</tr>
<tr>
<td>Fig. 2.4</td>
<td>The pathways that a drug can take to cross the intestinal mucosal barrier</td>
<td>20</td>
</tr>
<tr>
<td>Fig. 2.5</td>
<td>Schematic diagram of o/w emulsion method for preparation of nanoparticles</td>
<td>31</td>
</tr>
<tr>
<td>Fig. 2.6</td>
<td>Schematic diagram of w/o/w in-liquid drying process for nanoparticle preparation</td>
<td>32</td>
</tr>
<tr>
<td>Fig. 2.7</td>
<td>Schematic illustration of the nanoprecipitation process</td>
<td>34</td>
</tr>
<tr>
<td>Fig. 2.8</td>
<td>Structure of Poly glycolic acid (PGA), Poly lactic acid (PLA) and Poly (lactic-co-glycolic) acid (PLGA)</td>
<td>43</td>
</tr>
<tr>
<td>Fig. 2.9</td>
<td>Schematic illustration of the changes of polymer matrix during (a) surface erosion and (b) bulk erosion</td>
<td>45</td>
</tr>
<tr>
<td>Fig. 3.1</td>
<td>Standard plot of Gemcitabine HCl in distilled water by UV spectroscopy</td>
<td>69</td>
</tr>
<tr>
<td>Fig. 3.2</td>
<td>UV spectrum of Gemcitabine HCl in distilled water</td>
<td>69</td>
</tr>
<tr>
<td>Fig. 3.3</td>
<td>Standard plot of Gemcitabine HCl in buffer: methanol (97:3) by HPLC</td>
<td>72</td>
</tr>
<tr>
<td>Fig. 3.4</td>
<td>Overlay graph of calibration curve of Gemcitabine HCl in buffer: methanol by HPLC</td>
<td>72</td>
</tr>
<tr>
<td>Fig. 3.5</td>
<td>HPLC chromatogram of Gemcitabine HCl in buffer: methanol</td>
<td>73</td>
</tr>
<tr>
<td>Fig. 3.6</td>
<td>Standard plot of Gemcitabine HCl in Plasma by HPLC</td>
<td>76</td>
</tr>
<tr>
<td>Fig. 3.7</td>
<td>HPLC chromatogram of Gemcitabine HCl in plasma</td>
<td>76</td>
</tr>
<tr>
<td>Fig. 3.8</td>
<td>Second derivative UV spectra of Lopinavir at concentration 5-30 µg/ml</td>
<td>80</td>
</tr>
<tr>
<td>Fig. 3.9</td>
<td>Standard curve of Lopinavir in acetonitrile by UV spectroscopy</td>
<td>80</td>
</tr>
<tr>
<td>Fig. 3.10</td>
<td>Chromatogram of Lopinavir 25 mcg/ml in acetonitrile: buffer</td>
<td>83</td>
</tr>
<tr>
<td>Fig. 3.11</td>
<td>Standard plot of Lopinavir in acetonitrile: buffer by HPLC</td>
<td>83</td>
</tr>
<tr>
<td>Fig. 3.12</td>
<td>HPLC chromatogram of Lopinavir in plasma</td>
<td>85</td>
</tr>
<tr>
<td>Fig. 3.13</td>
<td>Standard plot of Lopinavir in plasma by HPLC</td>
<td>86</td>
</tr>
<tr>
<td>Fig. 4.1</td>
<td>Contour plots showing effect of (a) X₁ versus X₂ (b) X₂ versus X₃ (c) X₁ versus X₃ on PS of Gemcitabine HCl loaded NPs</td>
<td>110</td>
</tr>
<tr>
<td>Fig. 4.2</td>
<td>Response surface plots showing effect of (a) X₁ versus X₂ (b) X₂ versus X₃ (c) X₁ versus X₃ on PS of</td>
<td>110</td>
</tr>
</tbody>
</table>
Gemcitabine HCl loaded NPs

Fig. 4.3 Contour plots showing effect of (a) X_1 versus X_2 (b) X_2 versus X_3 (c) X_1 versus X_3 on EE of Gemcitabine HCl loaded NPs

Fig. 4.4 Response surface plots showing effect of (a) X_1 versus X_2 (b) X_2 versus X_3 (c) X_1 versus X_3 on EE of Gemcitabine HCl loaded NPs

Fig. 4.5 TEM image of Gemcitabine HCl loaded NPs

Fig. 4.6 Particle size distribution of optimized Gemcitabine HCl loaded NPs by Malvern Zetasizer

Fig. 4.7 DSC thermogram of Gemcitabine HCl (A), PLGA (B), Physical mixture (C) and Gemcitabine HCl loaded NPs (D)

Fig. 4.8 FTIR spectra of Gemcitabine HCl (A), PLGA (B), Physical mixture (C), Gemcitabine HCl loaded NPs (D)

Fig. 5.1 Contour plots showing effect of (a) X_1 versus X_2 (b) X_2 versus X_3 (c) X_1 versus X_3 on PS of Lopinavir loaded NPs

Fig. 5.2 Response surface plots showing effect of (a) X_1 versus X_2 (b) X_2 versus X_3 (c) X_1 versus X_3 on PS of Lopinavir loaded NPs

Fig. 5.3 Contour plots showing effect of (a) X_1 versus X_2 (b) X_2 versus X_3 (c) X_1 versus X_3 on EE of Lopinavir loaded NPs

Fig. 5.4 Response surface plots showing effect of (a) X_1 versus X_2 (b) X_2 versus X_3 (c) X_1 versus X_3 on PS of Lopinavir loaded NPs

Fig. 5.5 TEM image of Lopinavir loaded NPs

Fig. 5.6 Particle size distribution of Lopinavir loaded NPs by Malvern Zetasizer

Fig. 5.7 DSC thermograms of Lopinavir (A), PLGA (B), Physical mixture (C) and Lopinavir loaded PLGA NPs

Fig. 5.8 FTIR spectra of Lopinavir (A), PLGA (B), Physical mixture (C) and Lopinavir loaded PLGA NPs

Fig. 6.1 In vitro release profile of Gemcitabine HCl loaded NPs and plain drug solution in PBS 7.4 through dialysis membrane

Fig. 6.2 Ex vivo drug release studies of Gemcitabine HCl loaded NPs and plain drug solution in rat stomach (at 0.1 N HCl for 2h) and intestine (PBS 6.8 for 4h)

Fig. 6.3 In vitro drug release profile of Lopinavir loaded NPs and plain drug solution in PBS 7.4 by dialysis technique

Fig. 6.4 Ex vivo drug release studies of Lopinavir loaded NPs in rat stomach (0.1N HCl for 2 h) and intestinal segment (PBS 6.8 for 6h)

Fig. 7.1 Rhodamine loaded NPs at 30 min in Caco-2 cells; (A) NPs (B) DAPI stained Nuclei (C) Overlapped image showing internalization of NPs in cells

Fig. 7.2 Rhodamine solution at 30 min in Caco-2 cells (A) Dye solution
(B) DAPI Stained nucleus (C) Overlapped image showing clearly no internalization
Fig. 7.3
Rhodamine loaded NPs at 60 min in Caco-2 cells; (A) NPs
(B) DAPI stained Nuclei (C) Overlapped image showing internalization of NPs in cells

Fig. 7.4
Rhodamine solution at 60 min in Caco-2 cells (A) Dye solution (B) DAPI Stained nucleus (C) Overlapped image showing clearly no internalization

Fig. 7.5
Rhodamine loaded NPs at 90 min in Caco-2 cells (A) NPs (B) DAPI stained Nuclei (C) Overlapped image showing internalization of NPs in cells

Fig. 7.6
Rhodamine solution at 90 min in Caco-2 cells (A) Dye solution (B) DAPI stained Nuclei (C) Overlapped image showing no internalization of NPs in cells

Fig. 7.7
6-Coumarin loaded NPs at 30 min in Caco-2 cells; (A) NPs (B) DAPI stained Nuclei (C) Overlapped image showing internalization of NPs in cells

Fig. 7.8
6-Coumarin solution at 30 min in Caco-2 cells (A) Dye solution (B) DAPI stained Nuclei (C) Overlapped image showing less fluorescence in cells

Fig. 7.9
6-Coumarin loaded NPs at 60 min in Caco-2 cells; (A) NPs (B) DAPI stained Nuclei (C) Overlapped image showing internalization of NPs in cells

Fig. 7.10
6-Coumarin solution at 60 min in Caco-2 cells; (A) Dye solution (B) DAPI stained Nuclei (C) Overlapped image showing less fluorescence in cells

Fig. 7.11
6-Coumarin loaded NPs at 90 min in Caco-2 cells; (A) NPs (B) DAPI stained Nuclei (C) Overlapped image showing internalization of NPs in cells

Fig. 7.12
6-Coumarin solution at 90 min in Caco-2 cells; (A) Dye solution (B) DAPI stained Nuclei (C) Overlapped image showing internalization of NPs in cells

Fig. 7.13
Quantitative cellular uptake of 6-Coumarin solution and 6-Coumarin loaded NPs at (a) 1h (b) 2h (c) 4h

Fig. 7.14
Overlay graph of mean fluorescent intensity of 6-Coumarin loaded NPs showing a shift in intensity in comparison to plain dye solution at 1h (A), 2h (B) and 4h (C)

Fig. 7.15
Mean fluorescent intensity graphs showing the 6-Coumarin and 6-Coumarin loaded NPs uptake in Caco 2 cells at 1h (A, B), 2h (C, D) and 4h (E, F)

Fig. 7.16
In vitro Cytotoxicity of Gemcitabine HCl loaded NPs and plain drug solution on Caco 2 cells at 6h

Fig. 7.17
In vitro Cytotoxicity of Gemcitabine HCl loaded NPs and plain
drug solution on Caco 2 cells at 24h
Fig. 7.18

In vitro Cytotoxicity of Gemcitabine HCl loaded NPs and plain drug solution on K562 cells at 6h
Fig. 7.19

In vitro Cytotoxicity of Gemcitabine HCl loaded NPs and plain drug solution on K562 cells at 24h
Fig. 7.20

In vitro Cytotoxicity of Gemcitabine HCl loaded NPs and plain drug solution on K562 cells at 48h
Fig. 7.21

In vitro Cytotoxicity of Lopinavir loaded NPs and plain drug suspension on Caco 2 cells at 6h
Fig. 7.22

In vitro Cytotoxicity of Lopinavir loaded NPs and plain drug suspension on Caco 2 cells at 24h
Fig. 8.1(a)

Transverse section of intestine of rat after oral delivery of Rhodamine loaded Nanoparticles (at 10x)
Fig. 8.1(b)

Transverse section of intestine of rat after oral delivery of Rhodamine loaded Nanoparticles (at 63x)
Fig. 8.1(c)

Negative control, transverse section of intestinal tissue without administration of fluorescent Nanoparticles (at 10x)
Fig. 8.1(d)

Transverse section of intestine of rat after oral delivery of 6-Coumarin loaded Nanoparticles (at 10x)
Fig. 8.1(e)

Transverse section of intestine of rat after oral delivery of 6-Coumarin loaded Nanoparticles (at 63x)
Fig. 8.2

Plasma concentration time profile of Gemcitabine HCl loaded NPs and plain drug solution in male Wistar rats (n=5) showing the bioavailability enhancement of Nanoparticles
Fig. 8.3

Plasma concentration time profile of Lopinavir loaded NPs and plain drug suspension in male Wistar rats (n=5) showing the bioavailability enhancement of nanoparticles