CONTENTS

Synopsis i
Publications v

CHAPTER I: INTRODUCTION
1.1 Protein folding 1
 1.1.1 Protein misfolding and aggregation 3
 1.1.2 Ordered or amyloid aggregate 4
1.2 Fibrillar morphology 5
1.3 Various amyloid aggregates or protein misfolding disorder 6
 1.3.1 Amyloidogenic proteins and amyloid-based human diseases 6
 1.3.2 Prion protein 7
 1.3.3 Amyloid β-protein 8
 1.3.4 Polyglutamine repeats 8
 1.3.5 Insulin 9
 1.3.6 Transthyretin (TTR) 10
 1.3.7 Immunoglobulin light chains 10
 1.3.8 β2-Microglobulin 11
 1.3.9 Tau-protein 12
1.4 Synucleins 13
 1.4.1 Factors affecting the α-synuclein fibrillation 16
1.5 Molecular chaperones/ Heat shock proteins & protein aggregation 19
 1.5.1 Hsp100/Clp 20
 1.5.2 Hsp90 system 20
 1.5.3 Hsp70 system 21
1.6 Small heat shock proteins 21
 1.6.1 HspB5/ αB-crystallin 22
 1.6.2 Structure of αB-crystallin 23
 1.6.3 Chaperone-like activity of αB-crystallin 24
1.7 Scope of the present study

<table>
<thead>
<tr>
<th>CHAPTER II: α-SYNUCLEIN FIBRILLATION AND SDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 INTRODUCTION</td>
</tr>
<tr>
<td>2.2 EXPERIMENTAL PROCEDURES</td>
</tr>
<tr>
<td>2.2.1 Materials</td>
</tr>
<tr>
<td>2.2.2 Preparation of α-synuclein</td>
</tr>
<tr>
<td>2.2.3 Fibril growth of α-synuclein</td>
</tr>
<tr>
<td>2.2.4 Electron microscopy</td>
</tr>
<tr>
<td>2.2.5 Isothermal titration calorimetry</td>
</tr>
<tr>
<td>2.2.6 Bis-ANS binding</td>
</tr>
<tr>
<td>2.2.7 Time resolved fluorescence measures</td>
</tr>
<tr>
<td>2.2.8 Circular dichroism spectroscopy</td>
</tr>
<tr>
<td>2.2.9 SDS concentration-dependent dissociation of α-synuclein fibrils</td>
</tr>
<tr>
<td>2.2.10 Light scattering of α-synuclein upon treating with SDS</td>
</tr>
<tr>
<td>2.2.11 Measurement of critical micellar concentration (cmc) of SDS</td>
</tr>
<tr>
<td>2.3 RESULTS AND DISCUSSION</td>
</tr>
<tr>
<td>2.3.1 Over expression and purification of human α-synuclein</td>
</tr>
<tr>
<td>2.3.2 Dual behaviour of SDS in the fibril growth of α-synuclein</td>
</tr>
<tr>
<td>2.3.3 SDS-induced fibril growth of human α-synuclein</td>
</tr>
<tr>
<td>2.3.4 Interaction of SDS with α-synuclein studied by isothermal calorimetry</td>
</tr>
<tr>
<td>2.3.5 Fibrillogenic ensembles of α-synuclein with SDS exhibit enhanced hydrophobic surfaces</td>
</tr>
<tr>
<td>2.3.6 Fluorescence life-time study of bis-ANS binding to α-synuclein</td>
</tr>
<tr>
<td>2.3.7 SDS-induced secondary structural generation and fibrillogenicity of α-synuclein</td>
</tr>
<tr>
<td>2.3.8 Dual behaviour of SDS in fibril formation and fibril depolymerisation of α-synuclein</td>
</tr>
<tr>
<td>2.3.9 Treatment with SDS does not lead to amorphous aggregation of α-synuclein</td>
</tr>
</tbody>
</table>
2.3.10 Effect of α-synuclein on the detergent property / \textit{cmc} of SDS 53
2.3.11 DISCUSSION 56

CHAPTER III: \textit{α}-SYNUCLEIN AND αB-CRYSTALLIN 58

3.1 INTRODUCTION 60

3.2 EXPERIMENTAL PROCEDURE 60

3.2.1 Materials 60

3.2.2 Preparation of the αB-crystallin, 3DaB-crystallin and T162CaB-crystallin 61
3.2.3 Chaperone activity of αB- and 3DaB-crystallin towards the heat-induced aggregation of citrate synthase and DTT-induced aggregation of insulin 62
3.2.4 Chaperone activity of αB- and 3DaB-crystallin towards the fibril formation of α-synuclein 63
3.2.5 Dynamic light scattering studies 64
3.2.6 Urea denaturation studies 64
3.2.7 Thermal denaturation studies 65
3.2.8 Subunit exchange studies using reversal of fluorescence resonance energy transfer (FRET) 65
3.2.9 Preparation of mixed oligomers of wild type αB- and 3DaB-crystallin 66

3.3 RESULTS 67

3.3.1 Effect of the phosphorylation-mimicking mutation of αB-crystallin on the chaperone-like activity 67
3.3.2 Effect of temperature on the chaperone-like activity of the phosphorylation-mimicking mutant of αB-crystallin 68
3.3.3 Effect of the phosphorylation-mimicking mutation of αB-crystallin on the chaperone-like activity towards amyloid aggregates 69
3.3.4 Stability differences between αB-crystallin and its phosphorylation-mimicking mutant 71
3.3.5 Effect of phosphorylation on the structure of αB-crystallin 75
3.3.6 Thermal denaturation profile of αB- and 3DaB-crystallin 77
3.3.7 Effect of the phosphorylation-mimicking mutation of αB-crystallin on its subunit exchange 79
3.3.8 Differences in the chaperone-like activity of mixed oligomers of the wild type and 3DaB-crystallin from the individual homo-oligomers 83
CHAPTER IV: α-SYNUCLEIN, Aβ₁₋₄₀ , Cu²⁺ AND αB-CRYSTALLIN

4.1 INTRODUCTION

4.2 EXPERIMENTAL PROCEDURES

4.2.1 Materials

4.2.2 Expression and purification of 3DaB-crystallin

4.2.3 Cu²⁺-induced α-synuclein fibril formation

4.2.4 Cu²⁺-induced aggregation of Aβ₁₋₄₀

4.2.5 Cu²⁺-binding studies

4.2.6 Fluorescence spectroscopy

4.2.7 Time-resolved fluorescence measurements

4.2.8 Isothermal titration calorimetry

4.2.9 Circular dichroism

4.2.10 Dynamic light scattering

4.2.11 GdmCl-induced unfolding of αB- and 3DaB-crystallin

4.2.12 Chaperone assay

4.2.13 Generation of ROS by Cu²⁺-ascorbate

4.2.14 Effect of αB- and 3DaB-crystallin on ascorbate oxidation

4.2.15 Cell viability using FACS

4.3 RESULTS

4.3.1 Prevention of Cu²⁺-induced aggregation of α-synuclein and Aβ₁₋₄₀ by αB- and 3DaB-crystallin

4.3.2 Binding of Cu²⁺ to αB- and 3DaB-crystallin

4.3.3 Isothermal titration calorimetry studies of Cu²⁺ binding to αB- and 3DaB-crystallin

4.3.4 Selectivity of Cu²⁺-binding sites(s) of α-crystallins

4.3.5 Effect of Cu²⁺-binding on secondary and tertiary structure of αB- and 3DaB-crystallin