In this chapter some standard definitions relating to Boolean like gamma near-rings and some important results like; If Γ_N is a Boolean like Γ-near-ring then $a\gamma b = a\gamma b\gamma a$ for all $a, b \in \Gamma_N$, $\gamma \in \Gamma$; If Γ_N is a Boolean like Γ-near-ring then $a\gamma b\gamma c = a\gamma c\gamma b$ for $a, b, c \in \Gamma_N$, $\gamma \in \Gamma$ are proved. Further an ordering is defined on Γ_N by $a \leq b$ if $a = b\gamma a$ for all $\gamma \in \Gamma$ and for Γ_N a Boolean like Γ-near-ring, some interesting results like; Let $a, b \in \Gamma_N$, If $a \leq b$ then $a = b\gamma a = a\gamma b$; Zero is the least element of Γ_N and the Boolean like Γ-near-ring Γ_N is zero-symmetric; Suppose Γ_N has the greatest element then the Boolean like Γ-near-ring Γ_N is a Boolean like Γ-near-ring with identity. If Γ_N is a u-directed then Γ_N is a commutative Boolean like Γ-near-ring. If Γ_N is a Γ-meet semi lattice then Γ_N is zero-symmetric, Let $a, b \in \Gamma_N$, $a\gamma b = a \land b \forall \gamma \in \Gamma$ iff $a\gamma b = b\gamma a \forall \gamma \in \Gamma$; $a \land b = a\gamma b \land b\gamma a$ for all $a, b \in \Gamma_N$ and $\forall \gamma \in \Gamma$. $(a \land b) \land (a\gamma b - b\gamma a) = 0$ for all $a, b \in \Gamma_N$ and $\forall \gamma \in \Gamma$; are proved.

Definition 4.1 A Γ-near-ring Γ_N is a system consisting of

(i) a group $(\Gamma_N, +)$ (not necessarily Abelian)

(ii) a non-empty set Γ
(iii) a mapping \((a, \alpha, b) \rightarrow a\alpha b\) of \(\Gamma_N \times \Gamma \times \Gamma_N \rightarrow \Gamma_N\)

satisfying the following conditions:

(a) \((a + b) \alpha c = a\alpha c + b\alpha c\) \(\forall a, b, c \in \Gamma_N\) and \(\alpha \in \Gamma\).

(b) \((a\alpha b) \beta c = a\alpha (b\beta c)\) \(\forall a, b, c \in \Gamma_N\) and \(\alpha, \beta \in \Gamma\).

Note 4.2

(i) The identity 0 in \((\Gamma_N, +)\) is called the zero element of \(\Gamma_N\).

(ii) Clearly \(0\gamma b = 0\) \(\forall \gamma \in \Gamma, b \in \Gamma_N\).

(iii) The inverse of \(a \in \Gamma_N\) is denoted by \(- a\).

(iv) \((- a) \gamma b = - a\gamma b\).

Example 4.3 Let \((G, +)\) be a group. Let \(X\) be a nonempty set. Let \(\Gamma_N = \{f / f: X \rightarrow G\}\) and let \(\Gamma = \{g / g: G \rightarrow X\}\). Then \(\Gamma_N\) is a \(\Gamma\)-near-ring under the mapping \((f, g, h) \rightarrow fgh\) of \(\Gamma_N \times \Gamma \times \Gamma_N \rightarrow \Gamma_N\) where \(fgh\) is the composite of \(f, g, h\).

Definition 4.4 An element \(d \in \Gamma_N\) is called a **distributive element** if for all \(n, n^1 \in \Gamma_N, \gamma \in \Gamma\), \(d\gamma (n + n^1) = d\gamma n + d\gamma n^1\).

Definition 4.5 A \(\Gamma\)-Near ring \(\Gamma_N\) is said to be a **Zero-Symmetric** if \(n\gamma 0 = 0\) for all \(n \in \Gamma_N, \gamma \in \Gamma\).
Definition 4.6 A Γ-Near ring Γ_N is said to be **Weak Commutative** if for all $x, y, z \in \Gamma_N$, $\gamma \in \Gamma$, $x\gamma yz = x\gamma z\gamma y$.

Definition 4.7 A Γ Near-ring Γ_N with unit element is called a **Boolean like Γ-near-ring** provided $a\gamma a^*b\gamma b^* = 0$, $a\gamma a = a$ and $a \Delta a = a$ for every $a, b \in \Gamma_N$, $\gamma \in \Gamma$.

Lemma 4.8 If Γ_N is a Boolean like Γ-near-ring then $a\gamma b = a\gamma b\gamma a$ for all $a, b \in \Gamma_N$, $\gamma \in \Gamma$.

Proof: Let Γ_N is a Boolean like Γ-near-ring and $a, b \in \Gamma_N$, $\gamma \in \Gamma$.

Now

\[
(a\gamma b - a\gamma b\gamma a) \gamma = a\gamma b\gamma a - a\gamma b\gamma a
\]

\[
= a\gamma b\gamma a - a\gamma b\gamma a
\]

\[
= 0.
\]

Therefore

\[
(a\gamma b - a\gamma b\gamma a) \gamma = 0. \quad (1)
\]

and $a\gamma (a\gamma b - a\gamma b\gamma a)$

\[
= (a\gamma (a\gamma b - a\gamma b\gamma a)) \gamma (a\gamma (a\gamma b - a\gamma b\gamma a))
\]

\[
= a\gamma (((a\gamma b - a\gamma b\gamma a) \gamma) (a\gamma b - a\gamma b\gamma a))
\]

\[
= a\gamma 0\gamma (a\gamma b - a\gamma b\gamma a)
\]

\[\text{by (1)}\]

\[
= a\gamma 0.
\]
Also $(\alpha \gamma \beta - \alpha \gamma \beta \gamma) \gamma \alpha \beta \gamma$

$$= \alpha \gamma \beta \alpha \beta \gamma - \alpha \gamma \beta \alpha \beta \gamma \gamma \alpha \beta \gamma$$

$$= \alpha \gamma \beta \gamma - \alpha \gamma \beta \gamma$$

$$= 0.$$

As above it follows that

$$\alpha \gamma \beta \gamma (\alpha \gamma \beta - \alpha \gamma \beta \gamma) = \alpha \gamma \beta \gamma 0$$

Illy

$$\alpha \gamma \beta (\gamma \alpha \beta - \alpha \gamma \beta \gamma) = \alpha \gamma \beta \gamma$$

Now $(\alpha \gamma \beta - \alpha \gamma \beta \gamma) = (\alpha \gamma \beta - \alpha \gamma \beta \gamma) \gamma (\alpha \gamma \beta - \alpha \gamma \beta \gamma)$

$$= \alpha \gamma \beta (\alpha \gamma \beta - \alpha \gamma \beta \gamma) - \alpha \gamma \beta \gamma (\alpha \gamma \beta - \alpha \gamma \beta \gamma)$$

$$= \alpha \gamma \beta 0 - \alpha \gamma \beta \gamma 0$$

$$= (\alpha \gamma \beta - \alpha \gamma \beta \gamma) \gamma 0$$

$$= (\alpha \gamma \beta - \alpha \gamma \beta \gamma) \gamma (\alpha \gamma \beta - \alpha \gamma \beta \gamma) \gamma a$$

$$= (\alpha \gamma \beta - \alpha \gamma \beta \gamma) \gamma a$$

$$= 0.$$

Therefore $(\alpha \gamma \beta - \alpha \gamma \beta \gamma) = 0.$

Hence $\alpha \gamma \beta = \alpha \gamma \beta \gamma$ for all $a, b \in \Gamma _N, \gamma \in \Gamma$.

78
Theorem 4.9 If Γ_N is a Boolean like Γ-near-ring then

$$a\gamma b\gamma c = a\gamma c\gamma b$$ for $a, b, c \in \Gamma_N, \gamma \in \Gamma$ i.e. Γ_N is weak commutative.

Proof: Let Γ_N be a Boolean like Γ-near-ring and $a, b, c \in \Gamma_N, \gamma \in \Gamma$

Consider $a\gamma b\gamma c - a\gamma c\gamma b = a\gamma b\gamma c - a\gamma c\gamma b$ \hspace{1cm} by 4.8

$$= (a - a\gamma c) \gamma b\gamma c$$

$$= (a - a\gamma c) \gamma b\gamma (a - a\gamma c) \gamma c$$ \hspace{1cm} by 4.8

$$= (a - a\gamma c) \gamma b\gamma 0$$ \hspace{1cm} by 4.7

$$= a\gamma b\gamma 0 - a\gamma c\gamma b\gamma 0.$$ \hspace{1cm} (1)

Replacing b by $b\gamma c$ in (1) and by 4.8

$$a\gamma b\gamma c - a\gamma c\gamma b = a\gamma b\gamma c\gamma 0 - a\gamma c\gamma b\gamma 0.$$ \hspace{1cm} (2)

From (1) & (2),

$$a\gamma b\gamma 0 = a\gamma b\gamma c\gamma 0$$ for all $a, b, c \in \Gamma_N, \gamma \in \Gamma.$ \hspace{1cm} (3)

Substituting $b = a$ in (3) we have

$$a\gamma a\gamma 0 = a\gamma a\gamma c\gamma 0$$

$$\Rightarrow a\gamma 0 = a\gamma c\gamma 0$$ for all $a, c \in \Gamma_N, \gamma \in \Gamma$ \hspace{1cm} (4)
By (1) & (4) we get

\[a\gamma b c - a\gamma c b = a\gamma b 0 - a\gamma c b 0 \]

\[= a\gamma 0 - a\gamma 0 \]

\[= 0. \]

Therefore \(a\gamma b c = a\gamma c b. \)

Hence \(\Gamma_N \) is Weak Commutative.

Lemma 4.10 Let \(\Gamma_N \) be a Boolean like \(\Gamma \)-near-ring. If \(d \) is a distributive element in \(\Gamma_N \), then \(d + d = 0 \) and hence \(d = -d. \)

Proof: Let \(\Gamma_N \) be a Boolean like \(\Gamma \)-near-ring and \(d \) is a distributive element.

Consider \(d + d \)

\[d + d = (d + d) \gamma (d + d) \]

\[= d\gamma (d + d) + d\gamma (d + d) \]

\[= d\gamma d + d\gamma d + d\gamma d + d\gamma d \]

\[= d + d + d + d. \quad \text{by } 4.7 \]

Therefore \(d + d = 0 \Rightarrow d = -d. \)

Definition 4.11 A \(\Gamma \)-near-ring \(\Gamma_N \) is called a **distributive \(\Gamma \)-near-ring** if every element of \(\Gamma_N \) is a distributive element.
Definition 4.12 An element \(e \in \Gamma_N \) is called a **left identity** if
\[e \gamma a = a, \ \forall a \in \Gamma_N. \]

ORDERING ON BOOLEAN LIKE \(\Gamma \)-NEAR-RINGS

Definition 4.13 Let \(\Gamma_N \) be a Boolean like \(\Gamma \)-near-ring. Define a **relation** “\(\leq \)’’ on \(\Gamma_N \) by \(a \leq b \) if \(a = b \gamma a \) for all \(\gamma \in \Gamma \).

Proposition 4.14 Let \(\Gamma_N \) be a Boolean like \(\Gamma \)-near-ring and \(a, b \in \Gamma_N \). If \(a \leq b \) then \(a = b \gamma a = a \gamma b \).

Proof: Let \(\Gamma_N \) be a Boolean like \(\Gamma \)-near-ring and \(a, b \in \Gamma_N \). We know by 4.13 \(a \leq b \Rightarrow a = b \gamma a \)

Now \[a \gamma b = b \gamma a \gamma b \quad \text{(since } a = b \gamma a \text{)} \]

\[= b \gamma b \gamma a \quad \text{by } 4.9 \]

\[= b \gamma a. \quad \text{by } 4.7 \]

Therefore \(a \gamma b = b \gamma a \).

Corollary 4.15 Let \(\Gamma_N \) be a Boolean like \(\Gamma \)-near-ring with 0 as the least element of \(\Gamma_N \). Then the Boolean like \(\Gamma \)-near-ring \(\Gamma_N \) is zero-symmetric.

Proof: As \(\Gamma_N \) a Boolean like \(\Gamma \)-near-ring and since 0 is the least element of \(\Gamma_N \).
We have \(0 \leq a \) for all \(a \in \Gamma_N \)

by 4.14 \(a\gamma 0 = 0\gamma a = 0 \)

Therefore \(\Gamma_N \) is a zero-symmetric Boolean like \(\Gamma \)-near-ring.

Theorem 4.16 Let \(\Gamma_N \) be a Boolean like \(\Gamma \)-near-ring. Suppose \(\Gamma_N \) has the greatest element then the Boolean like \(\Gamma \)-near-ring \(\Gamma_N \) is a Boolean like \(\Gamma \)-near-ring with identity.

Proof: Suppose \(\Gamma_N \) has the greatest element say 1

then \(a \leq 1 \) for all \(a \in \Gamma_N \)

\[\Rightarrow a = l\gamma a \]

and therefore \(a\gamma 1 = 1\gamma a = a \) for all \(a \in \Gamma_N \).

Thus 1 is the identity element of \(\Gamma_N \).

Thus \(\Gamma_N \) is a Boolean like \(\Gamma \)-near-ring with identity.

Lemma 4.17 Let \(\Gamma_N \) be a Boolean like \(\Gamma \)-near-ring. If \(\Gamma_N \) is u-directed then \(\Gamma_N \) is a commutative Boolean like \(\Gamma \)-near-ring.

Proof: Let \(\Gamma_N \) be u-directed.

Let \(a, b \in \Gamma_N \)

Since \(\Gamma_N \) is u-directed, \(\exists c \in \Gamma_N \) such that \(c = a \lor b \)
Now $a \leq c$ and $b \leq c$

$\Rightarrow a = c\gamma$ and $b = c\gamma$ \quad \forall \gamma \in \Gamma.

Now $a\gamma b = c\gamma a\gamma b$

$= c\gamma b\gamma a$ \qquad \text{by 4.9}$

$= b\gamma a$

Therefore $a\gamma b = b\gamma a$ for all $a, b \in \Gamma_N$.

Thus Γ_N is a commutative Boolean like Γ-near-ring.

Theorem 4.18 Let Γ_N be a Boolean like Γ-near-ring. If Γ_N is a Γ-meet semi lattice then we have the following.

1. Γ_N is zero-symmetric.

2. Let $a, b \in \Gamma_N$, $a\gamma b = a \land b \quad \forall \gamma \in \Gamma$ iff $a\gamma b = b\gamma a \quad \forall \gamma \in \Gamma$.

3. $a \land b = a\gamma b \land b\gamma a$ for all $a, b \in \Gamma_N$ and $\forall \gamma \in \Gamma$.

4. $(a \land b) \land (a\gamma b - b\gamma a) = 0$ for all $a, b \in \Gamma_N$ and $\forall \gamma \in \Gamma$.

Proof: Suppose Γ_N is a Γ-meet semi lattice

1. For any $a \in \Gamma_N$, g.l.b $\{0, a\}$ exists and let it be ‘e’

 therefore $e \leq 0$, $e \leq a$

 $\Rightarrow e = 0\gamma e$ and $e = a\gamma e$ \quad $\forall \gamma \in \Gamma$

 $\Rightarrow e = 0$ and $0 = a\gamma 0$
\[a \gamma 0 = 0. \]

Therefore \(\Gamma_N \) is zero-symmetric.

2. \(a \gamma b = a \land b \iff b \gamma a = a \land b \iff a \gamma b = b \gamma a \) for all \(a, b \in \Gamma_N \).

Suppose \(a \gamma b = a \land b \)

then \(a \gamma b \leq a \) and \(a \gamma b \leq b \)

\[\Rightarrow \quad a \gamma b = a \gamma a \land b \text{ and } a \gamma b = b \gamma a \gamma b \]

\[\Rightarrow \quad a \gamma b = b \gamma a \land b = b \gamma b \gamma a = b \gamma a \]

Conversely suppose that \(a \gamma b = b \gamma a \).

Now \(a \gamma a \gamma b = a \gamma b \), hence \(a \gamma b \leq a \)

and \(b \gamma a \gamma b = b \gamma a = a \gamma b \), hence \(a \gamma b \leq b \).

Therefore \(a \gamma b \) is a lower bound of \(\{ a, b \} \).

Suppose \(c \leq a \) and \(c \leq b \) then \(c = a \gamma c, c = b \gamma c \).

Now \(c = a \gamma c = a \gamma b \gamma c \)

\[\Rightarrow \quad c \leq a \gamma b \]

Therefore \(\gamma.l.b \{ a, b \} = a \land b = a \gamma b \).

Similarly we can prove that \(b \gamma a = a \land b \iff a \gamma b = b \gamma a \).

Therefore \(\gamma.l.b \{ a, b \} = a \land b = b \gamma a \).
3. For all $\gamma \in \Gamma$

\[a \land b = a\gamma b \land b\gamma a \]

Let \(c = a \land b \) & \(d = a\gamma b \land b\gamma a \)

\[\Rightarrow c \leq a \quad \text{and} \quad c \leq b \]

\[\Rightarrow c = a\gamma c \quad \text{and} \quad c = b\gamma c \]

\[\Rightarrow c = a\gamma c = a\gamma b\gamma c \quad \text{and} \quad c = b\gamma c = b\gamma a\gamma c \]

\[\Rightarrow c \leq a\gamma b \quad \text{and} \quad c \leq b\gamma a. \]

Since \(d = a\gamma b \land b\gamma a \) we have \(c \leq d \).

Also \(d \leq a\gamma b \) and \(d \leq b\gamma a \).

Now \(a\gamma b \leq a \) and \(b\gamma a \leq b \)

\[\Rightarrow d \leq a\gamma b \leq a \quad \text{and} \quad d \leq b\gamma a \leq b \]

\[\Rightarrow d \leq a \quad \text{and} \quad d \leq b. \]

Since \(c = a \land b \), we have \(d \leq c \).

Therefore \(c = d \).

4. \((a \land b) \land (a\gamma b - b\gamma a) = 0 \)

Let \(x = (a \land b) \land (a\gamma b - b\gamma a) \)

then \(x \leq (a \land b) \) and \(x \leq (a\gamma b - b\gamma a) \)
\[\Rightarrow \quad x \leq a, \quad x \leq b, \quad x \leq (a \gamma b - b \gamma a) \]

\[\Rightarrow \quad x = a \gamma x, \quad x = b \gamma x, \quad x = (a \gamma b - b \gamma a) \gamma x \]

\[\Rightarrow \quad a \gamma x = b \gamma x, \quad x = a \gamma b \gamma x - b \gamma a \gamma x \]

\[= a \gamma a \gamma x - b \gamma b \gamma x \]

\[= a \gamma x - b \gamma x \]

\[= x - x \]

\[= 0. \]

Therefore \((a \land b) \land (a \gamma b - b \gamma a) = 0 \) for all \(\gamma \in \Gamma \).

Definition 4.19 Suppose \((P, \leq)\) is a partially ordered set. For any subset \(A\) of \(P\),

Let \(L(A) = \{x \in P / x \leq a, \forall a \in A\}\) and \(U(A) = \{x \in P / a \leq x, \forall a \in A\}\).

For convenience we write \(L(x)\) for \(L(\{x\})\) and \(U(x)\) for \(U(\{x\})\).

Write \(L(P) = \{L(A) / A \text{ is a non-empty finite subset of } P\}\) and

\(U(P) = \{U(A) / A \text{ is a non-empty finite subset of } P\}\).

Result 4.20 Let \(\Gamma_N\) be a Boolean like \(\Gamma\)-near-ring. If \(\Gamma_N\) is a generalized meet semi-lattice then \(\Gamma_N\) is a zero-symmetric.

Proof: Let \(\Gamma_N\) be a generalized meet semi-lattice.

Claim: \(\Gamma_N\) is zero-symmetric.
Let \(a \in \Gamma_N \). Consider the finite subset \(A = \{0, a\} \) of \(\Gamma_N \). There exists a non-empty finite subset \(B \) of \(\Gamma_N \) such that \(x \in L(A) \) iff \(x \leq b \) for some \(b \in B \) where \(L(A) \) is the set of all lower bounds of \(A \).

Let \(b \in B \), clearly \(b \leq b \)

\[
\begin{align*}
b \in L(A) \\
\text{Therefore } b \text{ is a lower bound of } A.
\end{align*}
\]

i.e \(b \leq 0 \) and \(b \leq a \)

\[
\Rightarrow \quad b = 0 \gamma b \quad \text{and} \quad b = a \gamma b
\]

\[
\Rightarrow \quad b = 0 \quad \text{and} \quad b = a \gamma b
\]

\[
\Rightarrow \quad a \gamma 0 = 0.
\]

Therefore \(\Gamma_N \) is zero-symmetric.

Definition 4.21 A poset \(P \) is called **distributive** if both the meet semi-lattices \(L(P) \) and \(U(P) \) are distributive.

Theorem 4.22 Let \(\Gamma_N \) be a Boolean like near-ring. If \(\Gamma_N \) is a distributive poset then the Boolean like \(\Gamma \)-near-ring \(\Gamma_N \) is commutative.

Proof: Let \(\Gamma_N \) be a distributive poset.

Since \(\Gamma_N \) is a distributive poset, \(L(\Gamma_N) \) and \(U(\Gamma_N) \) are meet distributive semi-lattices.
For any $L(A), L(B), L(C) \in L(\Gamma_N)$ such that

$L(A) \land L(B) \subseteq L(C)$, there exists $L(X), L(Y)$ in $L(\Gamma_N)$ such that

$L(A) \subseteq L(X), L(B) \subseteq L(Y)$ and $L(X) \land L(Y) = L(C)$.

Also for any $U(A), U(B), U(C) \in U(\Gamma_N)$ such that

$U(A) \land U(B) \subseteq U(C)$, there exists $U(X), U(Y)$ in $U(\Gamma_N)$ such that

$U(A) \subseteq U(X), U(B) \subseteq U(Y)$ and $U(X) \land U(Y) = U(C)$.

Let $a, b \in \Gamma_N$, Clearly $L(a) \land L(b) \subseteq L(b)$

Therefore there exists $L(a) \subseteq L(X), L(b) \subseteq L(Y)$ and $L(X) \land L(Y) = L(b)$.

Hence $b \in L(X)$ and $b \in L(Y)$.

Choose $x \in X$, then $b \leq x$ and $a \leq x$

\[\Rightarrow b = x \gamma b \text{ and } a = x \gamma a \]

Now $a \gamma b = x \gamma a \gamma b$

\[= x \gamma b \gamma a \]

\[= b \gamma a. \quad \text{by 4.9} \]

\[\Rightarrow a \gamma b = b \gamma a. \]

Therefore Boolean like Γ-near-ring Γ_N is commutative.