LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig.No</th>
<th>Name of The Figure</th>
<th>P.No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Block Diagram of Texture Classification System.</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Dataset-1: 45 texture classes (one image for each class) from OuTex. Canvas{005, 021}; Carpet{005}; Granite{001, 003, 004, 005, 006, 007, 008, 009, 010}; Paper{006}; Plastic{001, 002, 003, 004, 005, 009, 016, 017, 018, 019, 020, 021, 022, 023, 024, 025, 026, 027, 028, 029, 030, 031, 032, 033, 034, 035, 036, 038, 040, 041}; Wood{006, 008}.</td>
<td>12</td>
</tr>
<tr>
<td>1.3</td>
<td>Dataset-2: The dataset of granite textures used in the experiments (unrotated images). From the top: Acquamarina, Azul Capixaba, Bianco Cristal, Bianco Sardo, Rosa Beta, Azul Platino, Giallo Ornamentale, Giallo Napoletano, Giallo Santa Cecilia, Giallo Veneziano, Rosa Porri˜no A, Rosa Porri˜no B.</td>
<td>13</td>
</tr>
<tr>
<td>1.4</td>
<td>Vistex Database: Bark.0000, Bark.0001, Bark.0002, Bark.0003, Bark.0004, Bark.0005, Bark.0006, Bark.0007, Bark.0009, Bark.0010; Brick.0000, Brick.0001, Brick.0002, Brick.0003, Brick.0004, Brick.0005, Brick.0006, Brick.0007, Brick.0008, Brick.0009, Leaves.0000, Leaves.0001, Leaves.0002, Leaves.0003, Leaves.0004, Leaves.0005, Leaves.0006, Leaves.0007, Leaves.0008, Leaves.0009,</td>
<td>14</td>
</tr>
</tbody>
</table>
3.1 Fuzzy texture number (Base-5) representation. 27

3.2 (a) Original subimage (b) Representation of fuzzy texture elements (c) Evaluate FTU. 28

3.3 a) Representation of CSFTUM b) TCSFTUM c) BCSFTUM. 30

3.4 (a) Original sub image (b) Representation of TCSFTUM elements (c) Evaluate TCSFTU. 31

3.5 Comparative analysis of proposed TCSFTU-CM with existing methods. 39

4.1 a) Representation of a) 3×3 neighbourhood b) Texture elements c) Formation of Fuzzy left texture unit (FLTU) matrix d) Formation of Fuzzy right texture unit (FRTU) matrix. 43

4.2 Four possible patterns of a) FLTU (b) FRTU. 44

4.3 The Original Brodatz database -D_1, D_2, D_3, D_4, D_5, D_6, D_7, D_8, D_9, D_{10}, D_{11}, D_{12}, D_{13}, D_{15}, D_{16}, D_{17}, D_{18}, D_{19}, D_{20}, D_{21}. 46

4.4 Comparison of proposed AFLRTU and existing methods. 52

5.1 The basic LBP operator. 57

5.2 Kirsch edge response masks (KERM) in eight directions. 61

5.3 Transformation matrix from gray level image into KER matrix. 62
5.4 Original 3×3 matrix.

5.5 Step by step process of grey level values obtained by applying KERM on the 3×3 matrix of Figure 5.4.

5.6 a) Original gray level matrix b) The proposed KER matrix c) The LDP.

5.7 Stability of LDP vs. LBP (a) Original image (b) Image with noise.

6.1 Fuzzy local binary pattern (FLBP) image.

6.2 Five different RLM-FLBP’s on FLBP image of Figure 6.1.

6.3 Comparison of proposed RLM-FLBP with existing methods.