CHAPTER I
Introduction

Memory issues are extremely important to communication inquiry. Conversational interaction requires participants to utilize their memory for a great variety of tasks. Everyday people meet, converse with each other, and depart with memories of their interactions. These memories affect future interactions, feelings about others, and even judgment of self and others.

Stafford and Daly (1984) highlighted the demands made upon memory in conversation: “A critical requirement for successfully completing any interaction is a functioning memory that permits people (1) generate relevant topic from the store of memories they have from previous interactions with others involved in the current exchange; (2) access and use diverse psychological schemes that hold and integrate both general and specific topical information; (3) recall general rules of social interaction and mesh them with the particular conversation; (4) adjust to new messages that arise as the conversation progress within the frame of remembered materials; (5) devise expectancies and trajectories for likely directions the conversations may take; and (6) Store in some suitable fashion, impressions and memories of the conversation for future use”.

It has been observed that sentences spoken in natural conversation convey to fundamentally different type of information: propositional information and pragmatic information. Propositional information is characterized as information about the objects and events referred to by the sentence. Pragmatic information is defined as information about the contents of the sentence in the social interaction, including information about the speaker and his intentions, beliefs and his relations with the speaker. Sentences that convey a lot of pragmatic information referring
the speaker–listener interaction are said to be rich in interactional content. It has been found that sentences with high interactional content were remembered much better than sentences with low interactional content (Keenan, McWhinney, and Mayhew 1977).

Since interactions must be capable of storing and retrieving a great deal of information from memory in order to engage in communication, theories of interaction must be sensitive to the capabilities and limitations of memory. An exemplar is Capella and Folgar (1981) account of inconsistencies in attitudes and behaviours which is based on the distinction between semantic and episodic memory. Cognitive theories of communication appear promising (Planalp and Hewes, 1982) but will require careful consideration of the cognitive capacities of human beings, including their ability to retrieve information from memory to guide their own behaviors and interpret the behavior of conversational partners. Planalp and Hewes (1982) argued that retrieval issues have for reading implications for the communication scholars.

Moreover, an adequate conception of memory is also critical for communication research, which frequently employs verbal reports as a form of data. Limitations of subject’s ability to remember information bear directly on the veracity of verbal reports. Self report data is quite common in our literature. For example we ask subjects to reflect on their relationships, recall their viewing habits, remember critical incidents, or rate how likely they are to use various compliance gaining strategies. Despite the importance of the verbal report data to communication inquiry we know little about human information retrieval capacities or the accessibility of particular kinds of information.

Conversation Memory - The information we acquire about people or environment is often conveyed in informal conversations. A person may
tell us about someone he met or we may listen to people exchanging anecdotes about mutual acquaintance; later we may be called to convey our own impression of the individual who was described. We presumably do this on the basis of cognitive representation we had formed of the person while listening to the conversation. So conversation memory may be defined as “The ability of an individual to correctly recall or recognise the contents of the conversation either verbatim or semantic”.

Stafford and Daly (1984) investigated the conversational memory of the participants in conversation. They used free recall and reported that only 10% of all ideas units in the conversation were recalled by participants (The best subject only 40%), prompting the conclusion that people abilities to recall something as complex as conversations are limited.

However other researches obtained results showing higher recall of conversation than Stafford and Daly’s results. MacWhinney, Keenan and Reinke (1982), using both participants and observers as subjects, reported that recognition memory ranged from 71% to 82%. Kintsch and Bates (1977) indicated that students were able to recognise a considerable amount of information from a lecture even after 5 days. Benoit and Benoit (1986) employing a recognition test reported that conversation interactants were able to remember over 90% of specific verbal communicative behavior. These studies demonstrated that a considerable amount of conversational information is stored in memory and subjects are able to retrieve it accurately.

The obvious difference between these studies that carried out by Stafford and Daly (1984) and that of other studies is that Stafford and Daly used a form of recall (free recall), whereas other researchers used recognition test and hence reported a great amount of retention of
conversation. Recognition tests are generally accepted to be more sensitive than recall, as Bahrick (1964) notes “It has been found in most instances that recognition performance is superior to recall performance of the same target items.” The free recall procedure employed by Stafford and Daly (1984) instructed the subjects at the end of their conversation “to write down (or orally report) everything that he or she could remember about the conversation. Stafford and Daly argued recognition tests are less useful because memory structures are not isomorphic with the form of these tests. They suggested that free recall procedures “more clearly tap mechanisms that operate during everyday Conversation”. Because interactants must access information quickly by drawing “freely from his or her store of memories”.

Irrespective of the differences in the findings obtained by different researches, the importance of conversation memory can not be underestimated. In fact conversation memory has for reaching implications in the social network. Some of the major implications and significance of conversation memory may be summarized as follows:

1. Conversation memory for various aspects of conversation is an important component of social interaction. Impressions are often formed and social judgement made on the basis of what is remembered from verbal interactions.

2. Conversation memory may play a crucial role in social bonding, exchanging and concurring on reactions and prospective probably makes an interaction more enjoyable and a partner more likeable.

3. The descriptive studies of conversation memory (Edward & Middleton, 1986a, b; Tenny, 1986) support the importance of personal reactions; exchange of personal information, teach others about what the person is: What one likes, dislikes, cares about etc.
4. The purpose of conversation memory is to search for meaning to learn about others and explain ourselves; and to build and maintain social bonds.

Verbal communication is a central and ubiquitous features of social interaction, and researcher have paid increasing attention to the social psychology of language in recent years (e.g. Clark, 1985; Higgins, 1981; Kraut and Higgins, 1984).

A consideration of language is important because, as Kraut and Higgins (1984) have suggested, verbal communication represents a rich intersection of social and cognitive processes. The social cognitions of speakers and listeners play a crucial role in many different aspects of language use. For example, the successful use of referential expression depends on social knowledge that is shared by the interlocutors (Clark & Carlson, 1982; Clark and Marshall, 1981; Krauss, Vivekananthan, and Weinheimer, 1968). Moreover, social cognition also plays an important role in the interpersonal aspects of language use. Speaker often talks differently as a function of various aspects of the social situations (Blom & Gumperz, 1972; Giles & St. Clair, 1979) and certain characteristics of the listeners such as relative status (Cansler & Stiles, 1981) and age (DePaulo and Coleman, 1986). Thus various features of language use may reflect the speaker’s view of his or her relationship with the listeners and situation they are in.

To address the question of what is remembered from a conversation, it is first necessary to consider what is potentially memorable from a conversation. In other words, it is necessary to first delimit some of the dimensions of language use. One important distinction is often made between the surface structure of a sentence (i.e. the exact wording) and the underlying meaning or propositional content.
When people talk, they are trying to do the things with their words (e.g., requesting, informing, promising etc) that is, they are performing what are commonly referred to as speech acts. Thus, speech acts can be regarded as an important dimension of language.

An important point about speech acts is that, depending on the context, the same speech act (e.g., to request ×) can be performed with different syntactic forms (e.g. declarative – “I would like ×”; imperative – “Give me ×”) and with utterances having different propositional content (e.g. “I need ×,“ “I would like ×”etc).

Hence, Grice’s (1975) theory suggests that the ability of speakers to mean more than they say (i.e. convey non literal meaning) depends on shared knowledge regarding a set of maxims for how conversation should proceed.

It has been suggested that there are a numbers of dimensions of language (Brown and Levinson, 1978; Clark and Shunk, 1980; Ervin–Tripp, 1976; Lakoff, 1973). Among these dimensions, assertiveness, politeness, request, humorous, congruent and incongruent may be regarded as social dimension of language.

Much of early work on memory for verbal material has suggested that memory for the surface structure of sentences is poor relative to memory for the underlying content (Jarvella, 1971; Sachs, 1967, 1974). In other words, there is a strong tendency for individuals to remember what was said (Prepositional Content) but not how it was said. Later research has suggested a number of exceptions to this general finding. For example, memory for wording of remarks can be quite good if subjects are forced to attend to this dimension (Graesser and Mandler, 1975) or if the remarks (e.g. jokes or insults) have interactional value (Bates,
There is substantial body of evidence suggesting the existence of systematic biases in memory for the wording of remarks (Bock and Bower, 1974; Brewer and Hay, 1984; Wertsch, 1975). For example, Brewer and Hay (1984) had subjects read a text that had been written in one of five different styles (e.g. academic, business etc) subjects were later asked to recall the text. One of the major findings was that subjects did not recall the material verbatim but did produce items that were consistent with the style of the presented text. Brewer and Hay interpreted this as evidence for reconstructive processes. This study along with others (e.g. Wertsch 1975) demonstrated the importance of Contextual factors in memory for surface structure. Consistent with a suggestion made by Neisser (1967), this work suggests that memory for verbal material is a synthesis of the actual trace of the verbalization and more general information as well.

As stated earlier there are a numbers of dimensions of language. More specifically verbal information may be expressed using different version of the language. These versions may be categorized as assertive version, request version, humorous versions and congruent-incongruent version. There are considerable researches which have demonstrated the effect of assertive and request version of conversation on conversation memory. Holtgrave, Srull & Socall (1989) carried out three experiments, to examine the effect of information about a speaker’s status on memory for assertiveness of his or her remarks. The findings of their study clearly demonstrated that information does affect conversation memory for the assertiveness of his or her remarks, i.e. under certain conditions the remark of the high status speaker were remembered as more assertive
than the same remarks uttered by low status speaker. Subject in the high status speaker condition recalled both the assertive and non-assertive remarks as more assertive than did subjects in equal status condition. These investigators also found that subjects recalled assertive version of remarks more than non-assertive version of remarks. Though these findings provided evidence for the existence of relation between one’s speech form (assertiveness) and interpersonal variable (speaker’s status), the result cannot be taken for granted as these investigators have ignored two important variables i.e. listener’s (subjects) status and listener’s emotional mood. Thus it is possible that if the listener himself has high status, he might have not remembered the remarks of high status speakers as more assertive. In other words conversation between high status speaker and a low status addressee is heard by a person who also occupies high status, his conversation memory might have been affected in different way i.e. he might have not recalled, the assertive and non-assertive remarks as more assertive since social cognitions of both speakers and listener play a crucial role in the memorization of conversational remarks. Hence, Ahmad (1997) studied conversation memory as a function of listener’s emotional mood, status, version of conversation and speaker status. The main finding of our concern was that emotional state of the listener had differential effect on conversation memory. He found that depressed subjects have better conversation memory than elated subjects. However, Schmidt (1994) found that humorous sentences are better remembered than nonhumorous sentences. These conflicting findings obtained by Ahmad (1997) and Schmidt (1994) infact motivated the present author to undertake this investigation.

There is substantial body of evidence to the effect that humorous stimulus material influence memory to a great extent. Hence conversation
memory is not likely to remain unaffected by humorous stimulus material.

Thus, it has been found by numerous researchers that humorous material is retrieved in greater amount than nonhumorous material. For instance Kintsch and Bates (1977), Duncan, Nelson and Frontzak (1984), Gelb and Zinkhan (1989) and Schmidt (1994), have reported positive effect of humor on memory. However, there are some studies which have found just opposite results. For instance, Kaplan and Pascoe (1977) and Zillmann et al. (1980) have found negative effect of humour on memory. The findings of these investigators, though conflicting, make it crystal clear that humorous material has an effect on memory. It is therefore, logically assumed that conversation memory is also likely to be affected by humorous version of conversation. It is one of the objectives of the present investigation. More specifically, the present study is designed to explore how humorous version of conversation affects conversation memory.

Another consideration that motivated the present researcher to undertake this study is substantial body of evidence showing significant impact of incongruity not only on learning and memory but also on the formulation of impressions about other persons which is turn affect the development of interpersonal relationship. Since conversation and retention of conversation also affects interpersonal relationship, it becomes highly significant to investigate the effect of incongruity on conversation memory.

Hastie and Kumar (1979) published their classic paper in which they demonstrated that expectancy-incongruent items of information are recalled with higher probability than expectancy-congruent items. Hastie (1980) introduced an associative network model to account for these
findings. This model was further developed and enormous researches were carried out to test the model (Srull, 1981; and Srull & Wyer, 1980). This model provided an elegantly simple account of why incongruent items are better recalled. The model has remarkably specified about underlying processes. In particular, the model specified effects that occur during information encoding, it detailed the consequences of those effects for how information is represented in memory and it described the process by which stored items are retrieved from memory. The model also makes very specific statements about the cognitive processes that underlie social information processing.

However, Crocker and Vitkus (1983) have observed that impressions of people are resistant to change. Information that contradicts an initial impression of a person has relatively little impact on impression (Schneider, Hastrof, and Ellsworth, 1979). At the same time, research on memory for social information indicates that information that contradicts an impression of another person is particularly likely to be recalled i.e. information that violates our impressions of another is more likely to be recalled than information that confirms an impression.

Prior theorists have suggested two basic types of distinctiveness effects: those due to primary distinctiveness and those due to secondary distinctiveness (Schmidt, 1991). Primary distinctiveness effects occur when the properties of an item deviate from the properties of other items in a given study list. Such distinctiveness effects have been demonstrated by isolating physical features, such as font size or color of an item, from other items in a list (e.g., Fabiani & Donchin, 1995; Kishiyama & Yonelinas, 2003) or by isolating an item from other items in a list via membership in a semantic category (Fabiani & Donchin, 1995; Geraci & Rajaram, 2004; Hunt & Lamb, 2001; Schmidt, 1985; von Restorff, 1933).
In these cases, the isolating feature was contrasted with other homogeneous features in the experimental context. Secondary distinctiveness, on the other hand, occurs when the properties of an item deviate from the properties of items in one’s semantic memory, or long-term store. Thus, this type of distinctiveness effect occurs when deviance can be defined in terms of dissimilarity of an inherent characteristic of an item relative to the characteristics of a class of items or a particular study list. An example of this type of distinctiveness effect is the memory advantage of orthographically uncommon/exceptional words over regular words (Hirshman & Jackson, 1997; Hunt & Elliott, 1980; Rajaram, 1998). Given this characterization of distinctiveness effects, font fan effects may be thought of as an instance of primary distinctiveness.

One central question in the literature on distinctiveness effects is the extent to which the memory advantage for distinctive items derives from encoding-based processes (e.g., salience or enhanced attention; Fabiani & Donchin, 1995) or retrieval-based processes (e.g., item-specific processing used to access details of an encoding episode; Hunt & McDaniel, 1993). Whereas the literature on distinctiveness effects in recall has generally suggested that retrieval processes must play at least some role (Schmidt, 1991), the literature on distinctiveness effects in recognition memory has been less clear on the mechanisms involved.

Reder et al. (2002) attributed fan effects, and by association, font distinctiveness effects, to retrieval-based processes. Hunt and his colleagues (Dunlosky, Hunt, & Clark, 2000; Hunt, 2003; Hunt & Lamb, 2001; Hunt & McDaniel, 1993; Hunt & Smith, 1996; Smith & Hunt, 2000) have consistently argued that distinctiveness functions to separate items in memory from one another at retrieval. Further, Hunt (2003) has recently argued that distinctiveness can play a role both to enhance
recollection of studied items as well as to reject familiar, unstudied items. Rajaram (1998) argued that distinctiveness is critical to the experience of recollection phenomenology, whereby items that contain perceptually or conceptually distinctive features give rise to the experience of recollection. Thus, these three perspectives would all argue that font fan effects are a product of retrieval-based processes. On the other hand, Kishiyama and Yonelinas (2003) have suggested that distinctiveness influences recognition memory due to processes occurring at both encoding and retrieval. In particular, Kishiyama and Yonelinas argue that distinctiveness influences both recollection and familiarity-based recognition memory. Further, these authors argue that the effect of distinctiveness on recollection is produced by encoding-based factors, whereas the effect of distinctiveness on familiarity is produced by retrieval-based factors. Finally, many standard views of distinctiveness effects largely attribute the memorial advantage of distinctiveness to encoding-based processes, such as enhanced attention (e.g., Jenkins & Postman, 1948) or salience (e.g., Green, 1956; Schmidt, 1991).

Related to concept of incongruently is the construct known as distinctiveness. The constructs of incongruency and distinctiveness may be used interchangeably in the memory literature. Distinctiveness has been variously defined as the property that separate items or events that share few rather than many features with other items in memory (Nelson, 1979). According to Hunt and McDaniel (1993) and Schmidt (1996) distinctiveness emerges due to differences rather than similarities among items. In the opinion of Hunt and Mitchell (1982) distinctiveness arises from presentation of isolated items in the context of background items. Moreover, Schmidt (1991) says that distinctiveness characterizes events that are incongruent with active conceptual frameworks or that contain
salient features not present in active memory. These definitions of distinctiveness make it crystal clear that there is a common thread among these definitions: the differences among items that presumably uniquely specify some items or the salience of items that make them standout from among the background items.

It has been observed that distinctiveness has different effects on memory performance, depending on how it is defined; suggesting that concept of distinctiveness has been over applied. Theoretical explanations of the effect of distinctiveness on memory fail to specify what the different definitions of distinctiveness have in common and fail to compass adequately the broad range of phenomena to be explained. In view of this theoretical problem, incongruity hypothesis was developed as a refinement of the distinctive hypothesis (Eysenck, 1979; Hunt and Elliott, 1980). Since the concept of distinctiveness has been difficult to define and clear operational definition of distinctiveness has not offered, the incongruity hypothesis was proposed. Unlike, distinctiveness, incongruity has been clearly defined. Incongruity results from a mismatch between features present in working memory and features activated by an item. The incongruous items lead to an orienting response and, as a result, receive extra attention during encoding and increased storage of individual item information (Schmidt 1991). These processes are thought to be automatic in the sense that they are not the result of an intentional strategy and do not deprive other cognitive processes of attentional resources.

The theoretical construct of distinctiveness/incongruity emphasize that the presentation of unique properties enhance memory (Hunt and Elliott, 1980; Hirshman and Jackson, 1997). The isolation or von Restorff, effect is perhaps the best known demonstration of the
distinctiveness effect in memory and refers to the finding that people tend to have very good memory for unusual or incongruent items (Hunt, 1995; Geraci and Rajaram, 2004; Brandt, Gardinar and Macrae, 2006; Park, Arndt and Reder, 2006).

As stated earlier, while dealing with the processing of congruent and incongruent information, Crocker and Vitkus (1983) observed that impressions of people are resistant to change while information that contradicts an initial impression of a persona is recalled better than the information that confirms an impression (Hastie and Kumar, 1979; Hastie; 1980; Srull, 1981). Hence there was an apparent paradox of person perception. The researchers suggested three ways to resolve this paradox. The first was that the information recalled about a persona and the impression one has of him or her may be independent. The second possible resolution was that the process of integrating incongruent information into an impression, people may link the incongruent information to the information they have that fit their initial impression. Thus, the additional thought given to incongruent items may actually strengthen the existing links to congruent information in memory, and reinforce the initial impression. The third possible solution, as suggested by Crocker and Vitkus (1983), stems from the findings that people generally attribute behavior that is inconsistent with their impression of a person to situational causes (Bell, Wicklund, Macko and Larpin, 1976; Deaun and Emswiller, 1974; Feldman-Summers and Kiesler, 1974; Hayden and Mischel, 1976; Kulik, 1983). Behavior that is attributed to situational causes is irrelevant to an impression of what the person is like. Thus, when incongruent behavior can be attributed to situational causes the behavior may be recalled but it should have less impact on
impression. Crocker and Vitkus (1983) provided an empirical support, for all three of the possible resolutions of paradox of person perception.

Though Crocker and Vitkus (1983) obtained empirical support for their all the three resolutions, their findings may be subjective to alternative explanation. First, it may be possible that incongruent information commanded greater amount of attention leading to more rehearsal as compared to congruent information. Thus, this attention–rehearsal mechanism may be responsible for greater recall of incongruent information as compared to congruent information. Secondly, the mood of the subject may be a critical factor in determining whether an information is perceived as congruent or incongruent, for example if a subject is in an elated mood than humorous information mixed with nonhumorous information may not be perceived as incongruent information whereas a subject with depressed mood may perceive the same information as incongruent. The present study is designed to test these assumptions in the area of conversation memory, for it is a conversation memory that play vital role in the formation of impression about the other persons.

Still another important consideration that motivated us to undertake this proposed research is the existence of substantial body of evidence demonstrating mood biasing effect in memory. While studying the relation between different emotional states and memory, subjects are induced to feel happy or sad while learning list of words. They recall those lists better if they are induced to the same mood at the time of recall than if they are induced to a different mood, an effect usually called mood dependents retrieval (Bower et al., 1978; Bartlet et al., 1982; Schare et al., 1984). The mood dependent retrieval effect is also demonstrated by the tendency of the subjects to show better recall performance when they
experience same mood during encoding and retrieval as compared to when they experience different moods during encoding and retrieval. (Teasdale & Fogarty 1979; Taylor 1981; Natale & Hantas, 1982; Snyder & White, 1982). Thus Schmidt (1994) studied memory for humorous and nonhumorous version of sentences. Subjects recall performance was affected by their emotional states. Those who were in elated mood remembered humorous sentences more than nonhumorous versions of sentences. But those who were in depressed mood recalled more nonhumorous version of sentences than humorous version of sentences.

The above mentioned well established findings make it crystal clear that emotional mood of the subjects is a potent determiner of memory and hence, conversation memory is not an exception.

A topic of major theoretical interest within cognitive psychology pertains to the bidirectional relations among cognitive and emotional processes. In the existing literature, most attention has been focused on memory phenomena of various kinds (Blaney, 1986; Bower; 1981; Ellis & Ashbrook, 1987, 1988; Johnson & Magaro, 1987). And almost without exception, the research has focused on “conscious” or explicit memory: the person’s conscious, intentional recollection of some previous episode, most commonly reflected in standard tests of recall and recognition. So, for example, congruence between the individual’s mood states at encoding and retrieval appears to affect the accessibility of memories (Eich & Metcalfe, 1989). The effects of mood on memory fall into three general categories: (a) Mood-dependent memory effects, where retrieval is facilitated by a match between encoding and retrieval mood states; (b) Mood-congruent memory effects, where mood at time of encoding or retrieval facilitates retrieval of affectively congruent material; and (c) resource allocation effects, where extreme or negative mood states at
encoding or retrieval impair processing. All these effects have been documented in studies of explicit memory, employing conventional tests of recall or recognition. Moreover, it is important to recognize that mood is not just a state, like sleep or hypnosis that alter perception or induces a kind of amnesias. Mood is also a contextual cue, like other cues, that is processed when memories are encoded and guides the course of retrieval. In an effort to understand the apparent unreliability of context dependent memory, Eich (1980, 1989) has argued that state-dependent memory is a cue-dependent phenomenon that critically depends on the nature of the cues available at retrieval. From his point of view, a primary reason for inconsistency in the results of studies on context-dependent memory findings is the tendency for other stronger cues to overshadow the usually weak context cue. These potentially stronger cues may include experimenter presented or subject generated cues. So, for example, state dependent effects on memory are greatest under conditions of free recall, as opposed to cued-recall or recognition tests (Eich, 1980, 1989). And environment-dependent memory effects are abolished when subjects are instructed to imagine the environment in which the items had been studied (Smith, Glenberg & Bjork, 1978).

The foregoing analysis suggests two conditions under which chances of finding mood dependency would be increased: (a) if the link between the subjects’ mood and the list items is strengthened; and (b) if other potentially superseding cues are eliminated, thereby highlighting the mood cue. With respect to the mood-item link, there is no reason to think that this association is encoded automatically (Kihlstrom, 1989). Rather, it seems likely that the mood-item connection will most likely be made if subjects actively attend to their moods.
In contemporary psychology, the cognitive processing of emotional information has been assigned a special status. An important idea is that emotion-relevant information has a high priority in demanding attention because of its high motivational relevance (Lang et al. 1997): threat signals danger to be dealt with; happiness signals opportunities for elaboration, social bonding, mating behavior, etc. At the same time, the ability to selectively attend and respond to relevant stimuli is of crucial importance to display adaptive behavior and depends on our ability to focus on relevant information and inhibit irrelevant or distracting information.

In the past decades, a wealth of studies has examined selective attention for emotional information. These studies have most frequently used emotional modifications of cognitive-experimental tasks, with the emotional Stroop task (Stroop 1935) as the best-known example. The typical finding in the emotional Stroop task is that patients are often slower to name the colors of words associated with concerns relevant to their clinical condition (Williams et al. 1996). These results have been interpreted in terms of selective attention for and reduced inhibition of emotional information. A problem of the majority of the cognitive-experimental tasks used to investigate selective attention is that they only provide a coarse measure of attentional processing: attention is conceived as a unitary concept, whereas several models suggest that selective attention involves multiple components (e.g., Posner et al. 1987). Hereby, at least two different mechanisms can be distinguished: active selection of relevant information and active inhibition of irrelevant stimuli (Hasher and Zacks 1988). In most tasks, it is not possible to distinguish between those two aspects. For instance, in the emotional Stroop task the task-relevant (color of the word) as well as the task-irrelevant informations
(semantic content) are presented within the same stimulus presentation, which causes difficulties in disentangling the contribution of activation and inhibition mechanisms. A paradigm that offers a more valid operationalization of the mechanisms underlying the inhibition of attention to emotional information is an affective modification of multi-stimulus task named negative priming (Tipper 1985; Wentura 1999; Joormann 2004). This selective attention task allows measuring attentional inhibition of affective information. A complete trial in the negative affective priming paradigm (NAP) includes two separate trials: prime trial and a probe trial. Prime as well as probe trials consist of a stimulus pair consisting of a distracter and a target (e.g., pictures of emotional faces). The participant is instructed to evaluate the target (e.g., picture in a black frame) as positive or negative, while ignoring (inhibiting) the distracter (e.g., picture in a grey frame). In the experimental condition the valence of the distracter in the prime trial corresponds with the valence of the target in the probe trial. In the control condition there is no such similarity between prime and probe. Effective inhibition of the stimulus valence of the distracter in the prime trial leads to a slowdown in responding to the target in the probe trial when this target shares the same valence. This slowdown is called the Negative Affective Priming (NAP) effect and can be considered as a valid index of inhibitory function towards affective material (Wentura 1999).

Positive affective states are generally related to a more intuitive, generative and “loosening” or broadening cognitive processing style associated with an increased cognitive elaboration and flexibility (Fiedler 1988; Isen 2001; Aspinwall 1998). An interesting framework within this context is the broaden-and-build theory of Fredrickson (2001). This theory states that positive emotions are characterized by a broadening of
the thought-action repertoire, expanding the range of cognitions and behaviors that come to mind. One prediction of this model is that positive emotions widen the scope of attention. Several studies have shown that individuals in a positive mood display a global, holistic attention processing (e.g., Gasper and Clore 2002; Fredrickson and Branigan 2005). Other research could prove that positive mood leads to an increased cognitive flexibility that is accompanied by an increased distractibility (Dreisbach and Goschke 2004). Reduced inhibitory functioning in a positive mood might explain the observed broadened “thought-action” repertoire as well as the observed increased distractibility during positive mood (Seibert and Ellis 1991). Yet, research on the role of attentional inhibition processes under positive affect is rather scarce. Kuhl and Kazen (1999) demonstrated that Stroop interference disappeared under induction of positive affect. Based on the above-mentioned argumentation, they hypothesized that inhibitory function during a positive mood will be significantly reduced as compared with a neutral mood condition.

Recently, the NAP-task has been applied to investigate inhibition of positive and negative emotional stimuli in dysphoric students (Joormann 2004) and depressed patients (Goeleven et al. 2006a). In those studies, results revealed that participants with elevated depression scores failed to inhibit mood-congruent information (reduced NAP-effect), showing that depression is associated with a specific inhibitory deficit for negative information. At present an important question remains whether this observed inhibitory deficit is a vulnerability factor related to a stable trait or a variable component associated with emotional state. Based on the existing literature, arguments can be found for both ideas. An indication for the trait hypothesis is that high levels of rumination, which
are observed in depressed individuals and related to its maintenance (Nolen-Hoeksema 1991), have been linked to dysfunctional inhibition mechanisms (e.g., Linville 1996; Joormann 2006). However, the inhibition concept also fits with the general assumption that a negative mood impairs the amount of available cognitive capacity that can be allocated to a certain task as a consequence of intruding irrelevant information in attentional sources (Ellis and Ashbrook 1988). Indeed, it has been found that induced stress reduces inhibition function by using a non-emotional negative priming task (Braunstein-Bercovitz 2003; Skosnik et al. 2000).

The most recent study was carried out by Goeleven, DeRaedt and Koster (2007) in which they demonstrated that the ability to inhibit affective information plays a major role in efficient cognitive processing. In this study the effect of mood induction on inhibitory processing of emotional material was investigated. In Experiment 1, performance on a negative affective priming task (NAP) following negative and positive mood induction (MIP) was compared to a neutral mood condition. Results revealed that, as compared with the neutral mood condition, inhibitory function for affective material was unaffected by negative MIP. However, after the positive MIP, inhibitory processes were significantly impaired. In Experiment 2, they replicated and extended the findings on positive affect and inhibition. The data concerning positive mood fit with the general findings that positive mood often leads to a “loose, flexible” processing mode.

As far as effect of mood on memory is concerned, it has been widely investigated by numerous researchers. The main interest of these researchers was mood dependent memory and mood congruent memory: Some researchers demonstrated dependent memory in implicit memory
but not in explicit memory (Mathews, Mogg, May, and Eysenck, 1989), whereas other researches found just opposite results i.e. they demonstrated mood dependent memory in explicit memory (Teasdale and Fogarty 1979; Taylor 1981; Natale and Hantas, 1982; Snyder and White, 1982). However, mood congruent memory has been demonstrated consistently by large number of investigators (Gilligan & Bower, 1984; Laird, Wagner, Halal, and Szegda, 1982; Madigan & Bollenbach, 1982; Snyder & White, 1982; Teasdale & Fogarty, 1980; Teasdale & Taylor, 1981; Teasdale & Russell, 1983).

The foregoing discussion highlights the facts that mood is an important variable in memory studies. Like physiological state and environmental surround, mood is a feature of an event that can be encoded along with other aspects of a memory and serve as a potential retrieval cue. Like the physiological states induced by psychoactive drugs, it can affect the deployment of attention towards some features of environment as oppose to others. Thus it is established beyond doubt that emotion evoking qualities of stimulus have a profound impact on memory processes. It is evident from the publication of large numbers of journal articles and books on memory processes and emotion. The “Handbook of Emotion and Memory: Research and Theory” by Christianson (1992) is a recent addition in the existing literature on memory and emotion.

Further more, the mood and memory research induces a new, intriguing variable to the memory equation. Though, since the time of Aristotle cognition and affect have been assumed to be radically different so different that they might have little to do with each other. However, recent work in mood and memory has made it crystal clear that emotions affects memory processes in the same way as other cognitive activities are affected. Generally a question is raised: How can two such different
things as emotions and cognitions have such similar affect? The answer of this question was scientifically given by Ellis and Ashbrook (1989) and Bower (1981) who believed that it is the feelings, not some other component of emotional episode which produces memory affects. According to them a normal emotional episode consists of atleast six easily distinguished components: the eliciting event, the appraisal of that event, patterns of autonomic response, expressive behavior, instrument action, and the feeling. Ordinarily, all these components occur together. Consequently, any of these components could mediate the memory affects. Thus, Laird, Wagener, Halal and Szegda (1984) have demonstrated that only the feelings affect cognitive processes. In short, the theories identify the emotional feeling as that which affect memory.

A few studies have investigated the effects of emotional state on the retrieval of personal experiences, such as early childhood memories or more recent personal events (Goldstein & Ellis, 1983; Siegal et al., 1979; Madigan & Bollenbach, 1982; Teasdale & Fogarty, 1979; Teasdale et al., 1980). The evidence has been rather inconsistent with regard to mood effect on these memories. For instance, some investigators have obtained findings which are consistent with a mood congruency effect on the recall of personal memories (Forgas, Bower, & Krantz, 1984; Madigan & Bollenbach, 1982, Teasdale & Fogarty, 1979; Teasdale et al., 1980). Other researchers have been unable to support a mood congruency effect on the recall of early childhood memories (Siegal et al., 1979).

Whereas the network theory would suggest a facilitation of the mood with regard to the recall of personally-relevant events which are associated with one’s prevailing mood (Bower, 1981), the resource allocation model predicts the recall of personal memories which are highly integrated in the memory system to be relatively impervious to the
effects of emotional states (Ellis & Ashbrook, 1988). Clearly, more research needs to be conducted focusing on the effects of moods on the recall of personal memories to resolve these inconsistent findings evidenced in the literature. Hence the present study is designed to explore how listeners’ mood affects conversation memory. In short in the light of existing findings regarding mood dependent memory and mood congruent memory, it is highly logical to assume that if the listener is in a state of elated mood then he may recall humorous content of the conversation more than nonhumorous content of the conversation. Furthermore it may also be assumed that if the listener is in a state of depressed/sad mood, he may recall humorous content of the conversation less than the subject with elated mood. It is further hypothesized that both subjects with elated mood and subjects with depressed/sad mood are likely to recall incongruent content of the conversation more as compared to congruent content of the conversation. The present study is designed to test these assumptions also. The findings of the present study will not only open a new area of research in memory but will also provide significant information about the development of interpersonal relations and will highlight the process of impression formation. Furthermore, the findings of the present study may also be applied in education settings like preparing syllabai and teaching methods.