CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General Introduction</td>
<td>1-35</td>
</tr>
<tr>
<td>1.1 Coir industries in Kerala</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Characteristics of coir industry effluents</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Dyes</td>
<td>6</td>
</tr>
<tr>
<td>1.3.1 Natural dyes</td>
<td>8</td>
</tr>
<tr>
<td>1.3.1.1 Advantages of natural dyes</td>
<td>8</td>
</tr>
<tr>
<td>1.3.1.2 Limitations of natural dyes</td>
<td>9</td>
</tr>
<tr>
<td>1.3.2 Synthetic Dyes- structure and classification</td>
<td>9</td>
</tr>
<tr>
<td>1.3.2.1 Acid dyes</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2.2 Reactive dyes</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2.3 Metal Complex dyes</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2.4 Direct dyes</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2.5 Basic dyes</td>
<td>11</td>
</tr>
<tr>
<td>1.3.2.6 Mordant dyes</td>
<td>11</td>
</tr>
<tr>
<td>1.3.2.7 Disperse dyes</td>
<td>11</td>
</tr>
<tr>
<td>1.3.2.8 Pigment dyes</td>
<td>12</td>
</tr>
<tr>
<td>1.3.2.9 Vat dyes</td>
<td>12</td>
</tr>
<tr>
<td>1.3.2.10 Anionic dyes and ingrain dyes</td>
<td>12</td>
</tr>
<tr>
<td>1.3.2.11 Sulphur dyes</td>
<td>12</td>
</tr>
<tr>
<td>1.3.2.12 Solvent dyes</td>
<td>12</td>
</tr>
<tr>
<td>1.3.2.13 Fluorescent brighteners</td>
<td>13</td>
</tr>
<tr>
<td>1.3.2.14 Other dye classes</td>
<td>13</td>
</tr>
<tr>
<td>1.4 Dyes used in coir industry</td>
<td>16</td>
</tr>
<tr>
<td>1.5 Production and discharge statistics of dyes</td>
<td>16</td>
</tr>
<tr>
<td>1.6 Dyes and environmental concern</td>
<td>18</td>
</tr>
<tr>
<td>1.7 Toxicity of dyestuffs</td>
<td>20</td>
</tr>
</tbody>
</table>
1.8 Dye abatement Techniques

1.8.1 Physical and chemical methods

1.8.2 Bioremediation

1.8.2.1 Fungal degradation

1.8.2.2 Bacterial degradation

1.8.2.3 Algal Biodegradation

1.8.3 Role of enzymes in dye degradation

1.9 Factors affecting Dye biodegradation

1.10 Detection and Analysis of Biodegradation products

2. Review of literature

2.1 Coir and textile industry effluents

2.1.1 Physicochemical parameters of effluents

2.2 Toxicity studies on fish

2.3 Adverse effects of dyes in humans

2.4 Microbes in degradation of dyes

2.4.1 Fungi in degradation

2.4.2 Bacteria in degradation

2.4.2.1 Aerobic biodegradation of azo dyes

2.4.2.2 The anaerobic degradation of (sulphonated) aromatic amines

2.4.2.3 Aerobic degradation of azo dyes

2.4.2.4 The aerobic biodegradation of (sulphonated) aromatic amines

2.4.3 Combined anaerobic/aerobic biodegradation of azodyes

2.4.4 Degradation studies using consortia and bioreactors

2.5 Dyes selected for present study

2.5.1 Acid Orange 7

2.5.2 Direct Blue 6

2.6 Factors affecting dye biodegradation
3. **Physicochemical parameters of coir industry effluents** 67-89

3.1 Introduction 67

3.2 Materials and Methods 68

3.2.1 Sample collection 68

3.2.2 Sample Preservation and Analysis 68

3.2.3 Chemicals and Glass wares 69

3.2.4 Determination of pH 69

3.2.5 Determination of Temperature 69

3.2.6 Determination of Dissolved Oxygen (Winkler’s Method) 70

3.2.7 Determination of Biochemical Oxygen Demand (BOD) 72

3.2.8 Determination of Total Hardness of the Sample 73

3.2.9 Determination of Electrical Conductivity 75

3.2.10 Determination of Chemical Oxygen Demand 76

3.2.11 Determination of Chloride 78

3.2.12 Determination of Total Suspended Solids (TSS) 79

3.3 Results 80

3.4 Discussion 83

4. **Toxicological impact of dyes on Anabus testudineus** 91-117

4.1 Introduction 91

4.2 Materials and Methods 93

4.2.1 Dyes 93

4.2.2 Collection and maintenance of experimental fish 93

4.2.3 Physicochemical characterization of water 94

4.2.4 Chemicals and Glassware 94

4.2.5 Acute Toxicity Tests: Determination of LC₅₀ 95

4.2.6 Chronic Toxicity studies with sub lethal concentration and exposure periods 95

4.2.7 Behavioural Changes 97
4.2.8 Biochemical parameters: Enzyme Assays
4.2.9 Haematological examination: Impact on RBC
4.2.10 Histopathological examination of Liver and Gill
4.2.11 SDS-PAGE analysis
4.2.12 Statistical Analysis

4.3 Results
4.3.1 Parameters of sample water
4.3.2 Acute toxicity tests: Determination of LC50
4.3.3 Behavioural Changes
4.3.4 Biochemical parameters: Enzyme assays
4.3.5 Haematological parameter
4.3.6 Histopathology of Liver and Gill
4.3.7 SDS PAGE Analysis

4.4 Discussion

5. Isolation, screening and identification of dye decolourising bacteria

5.1 Introduction
5.2 Materials and Methods
 5.2.1 Sample Collection
 5.2.2 Dyes and Chemicals
 5.2.3 Media
 5.2.4 Enrichment and isolation of dye tolerating strains- Primary Screening
 5.2.5 Secondary Screening of dye decolourizing strains
 5.2.6 UV-VIS spectral analysis
 5.2.7 Identification of selected bacterial strains
 5.2.7.1 Colony characteristics
 5.2.7.2 Staining and motility
 5.2.7.3 Biochemical Reactions
5.2.7.4 Molecular identification of the selected isolates
5.2.8 Selection of the best decolourizer using different dyes
5.2.9 Characteristics of selected isolate
 5.2.9.1 Antibiotic sensitivity Profile
 5.2.9.2 Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDX) of selected isolate B1
 5.2.9.3 Enzyme production by selected isolate
5.3 Results
 5.3.1 Sample collection and enrichment of samples
 5.3.2 Screening of dye decolourizing strains
 5.3.3 Identification of the screened isolates and the selection of the potential strains
 5.3.4 UV-Vis spectral scan of Acid Orange 7
 5.3.5 Identification of selected isolates
 5.3.6 Decolourization of different dyes with selected isolates
 5.3.7 Characteristics of selected isolate B1
5.4 Discussion
6. Optimization of culture conditions for biodegradation of selected Azo dyes
 6.1 Introduction
 6.2 Materials and Methods
 6.2.1 Dyes and Chemicals
 6.2.2 Inoculum preparation
 6.2.3 Measurement of cell dry weight (gm)
 6.2.4 Effect of different Media on decolorization
 6.2.5 Effect of amount of yeast extract on decolorization
 6.2.6 Effect of incubation period on decolourization
6.2.7 Effect of agitation on decolourization 154
6.2.8 Effect of substrate (dye) concentration on decolourization 155
6.2.9 Effect of pH on decolourization 155
6.2.10 Effect of temperature on decolourization 155
6.2.11 Effect of Carbon and Nitrogen sources on decolourization 156

6.3 Results 156
6.3.1 Effect of different media on dye decolorization 156
6.3.2 Effect of yeast extract on decolourization 157
6.3.3 Effect of Incubation time on decolourization 158
6.3.4 Effect of agitation 158
6.3.5 Effect of substrate (dye) concentration 160
6.3.6 Effect of initial pH 161
6.3.7 Effect of temperature 162
6.3.8 Effect of different Carbon and Nitrogen source 163

6.4 Discussion 163

7. Development of a new consortium 169-177
7.1 Introduction 169
7.2 Materials and Methods 170
 7.2.1 Dyes and Chemicals 170
 7.2.2 Development of bacterial consortium 171
 7.2.3 Decolorization assays 171
 7.2.4 Decolorization of industrial effluents 172
 7.2.5 Statistical analysis 172
7.3 Results 172
 7.3.1 Development of bacterial consortium 172
 7.3.2 Dye decolorization by selected consortia 174
 7.3.3 Decolourization of industrial effluent 176
7.4 Discussion 176
8. Analysis of degraded products and evaluation of phytotoxicity 179-198

8.1 Introduction 179

8.2 Materials and Methods 180
8.2.1 UV-Vis spectral analysis 180
8.2.2 Extraction of degraded metabolites 180
8.2.3 HPLC analysis 181
8.2.4 FTIR analysis 181
8.2.5 LC-MS Analysis 181
8.2.6 Phytotoxicity studies 182
8.2.7 Statistical analysis 182

8.3 Results 182
8.3.1 UV-Vis spectral study 182
8.3.2 HPLC Analysis 184
8.3.3 Fourier transform infrared spectroscopy analysis 187
8.3.4 LC-MS Analysis 191
8.3.5 Phytotoxicity studies 193

8.4 Discussion 195

9. Summary and Conclusion 199-205

References

Appendix