List of Tables

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Label</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Liaison matrix for Oldham's coupling</td>
<td>13</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Literature on Graph based approaches</td>
<td>13</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Literature on GA based approaches</td>
<td>17</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Literature on SA based approaches</td>
<td>19</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Literature on ACO based approaches</td>
<td>20</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Literature on PSO based approaches</td>
<td>21</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>Literature on Petri Nets based approaches</td>
<td>22</td>
</tr>
<tr>
<td>Table 2.8</td>
<td>Literature on Neural Networks based approaches</td>
<td>23</td>
</tr>
<tr>
<td>Table 2.9</td>
<td>Miscellaneous algorithms</td>
<td>24</td>
</tr>
<tr>
<td>Table 2.10</td>
<td>Literature on CAD based approaches</td>
<td>28</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Spatial interaction for knuckle joint</td>
<td>54</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Physical properties for knuckle joint</td>
<td>55</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Spatial information for knuckle joint</td>
<td>55</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Extreme coordinates</td>
<td>55</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Relationship Matrix</td>
<td>56</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Complete Inclusion Matrix</td>
<td>56</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Major Inclusion Matrix</td>
<td>56</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Overlap Matrix</td>
<td>57</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Component type realization for Knuckle Joint</td>
<td>66</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Component type realization for Non-Return Valve</td>
<td>68</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Component type realization for Pen assembly</td>
<td>69</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Assembly Configuration in Pen assembly</td>
<td>89</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Assembly Configuration in Oldham's coupling</td>
<td>90</td>
</tr>
</tbody>
</table>
CONTENTS

Acknowledgements I
Abstract .. II
List of Figures IV
List of Tables VI
Contents ... VII

1 ASSEMBLY SEQUENCE PLANNING 1
1.1 Introduction 1
1.2 The Assembly System 2
1.3 Assembly Planning 3
1.4 Assembly Sequence Planning 4
1.5 Current research trend in Assembly Sequence Planning 5
1.6 Organization of the thesis 7

2 LITERATURE REVIEW 9
2.1 Introduction 9
2.2 Graph based approaches 10
2.3 Genetic Algorithm 14
2.4 Simulated Annealing 18
2.5 Ant Colony Optimization 19
2.6 Particle Swarm Optimization 20
2.7 Petri Nets 21
2.8 Neural Networks 23
2.9 Miscellaneous algorithms 24
2.10 CAD based approaches 25
2.11 Research Gaps 29
3 PROBLEM DEFINITION
3.1 Introduction 32
3.2 Problem statement 34
3.3 Objectives of research work 35
3.4 Proposed generalized framework for research work 36

4 DATA EXTRACTION AND INTERPRETATION FROM CAD PRODUCT DEFINITION
4.1 Introduction 39
4.2 Extraction of product data 41
4.3 Extreme coordinates of each part in assembly 42
4.4 Interpretation of Product data 46
 4.4.1 Relationship Matrix 46
 4.4.2 Complete Inclusion Matrix 47
 4.4.3 Overlap Matrix 49
 4.4.4 Major Inclusion Matrix 52
4.5 Results and discussion 53
4.5 Conclusions 57

5 COMPONENT TYPE REALIZATION AND PRECEDENCE RELATIONSHIP GENERATION
5.1 Introduction 59
5.2 Component type realization 59
 5.2.1 Connector component realization 60
 5.2.2 Secondary component realization 61
 5.2.3 Main parts realization 61
5.3 Precedence relationship generation 61
5.4 Results and discussions 65
 5.4.1 Knuckle Joint 65
 5.4.2 Non-Return Valve 67
8 CONCLUSIONS, CONTRIBUTION AND FUTURE SCOPE

8.1 Conclusions

8.1.1 Literature review, research gaps and problem definition 98

8.1.2 Data extraction and interpretation from CAD Product definition 100

8.1.3 Component type realization and precedence relationship generation 101

8.1.4 Assembly configuration identification and precedence relationship generation 102

8.1.5 Automated generation of Hierarchical Directed Graph 102

8.2 Contributions of the research work 103

8.3 Limitations and future scope of the research work 103

Bibliography 105

Publications based on the research 111

Course Work 112