LIST OF FIGURES

1.1 General fault detection scheme employing PV model 20
1.2 Equivalent PV models: (a) Single Diode and (b) Double Diode 21
1.3 Solution cycle for parameter identification 21
1.4 Flow diagram for the thesis work .. 25
2.1 Block diagram of a typical grid connected PV system 30
2.2 System Grounding for PV systems 31
2.3 Possible fault occurrences in a PV system 33
2.4 Location wise schematic to show fault occurrence 34
2.5 LG faults in PV arrays: (a) and (b) single LG and (c) double LG fault . 35
2.6 LL faults in PV arrays: (a) Intra string and (b) Cross string LL fault . 36
2.7 Arc faults in PV arrays: (a) Parallel and (b) Series arc fault 38
2.8 Shade Faults: (a) Normal PV array, (b) and (c) Possible shade patterns . 39
2.9 Wiring diagram for possible fault occurrences in the DC side of PV systems ... 41
2.10 I-V and P-V characteristics in various irradiation profiles 42
2.11 I-V and P-V characteristics for different module temperatures 42
2.12 I-V response to LG faults ... 44
2.13 I-V response to LL faults ... 44
2.14 Voltage and current waveforms in response to: a) Parallel and b) Series arc faults ... 45
2.15 Output characteristics in shaded conditions: a) I-V and b) P-V characteristics ... 46
2.16 Output P-V characteristics of a 5×5 PV array under: (a) LG, (b) LL and (c) shade faults ... 47
2.17 Connection diagrams for various protection devices: (a) OCPD, (b) GFDI Fuse, (c) RCD, (d) AFCI and (e) AFD 49
3.1 Insulation resistance measurement according to IEC 62109-2: (a) Un-grounded and (b) Functionally grounded PV system

3.2 Typical $n \times n$ PV array: (a) Different fault locations, (b) Low impedance intra string LL fault and (c) Low impedance LG fault

3.3 System behavior under faulty conditions with and without MPPT: (a-c) LL faults and (d-f) LG faults

3.4 Faults considered in the first string of the 5×5 PV array for compatibility analysis: (a) LL and (b) LG faults

3.5 Hardware prototype developed for real time testing

3.6 Experimental results for LL/LG faults at different mismatch impedances without MPPT: (a) 7Ω and (b) 7.5Ω

3.7 Experimental results for LL/LG faults at different mismatch impedances with MPPT: (a) 7Ω and (b) 7.5Ω

3.8 Experimental results for LL/LG faults at different mismatch impedances with MPPT in a 5×3 PV array: (a) 12Ω and (b) 13.5Ω

3.9 GFDI and OCPD currents for 7Ω fault in varying irradiation levels

3.10 Experimental result for 7.5Ω fault in various irradiation levels

3.11 Practical fitness analysis on advanced fault detection techniques

3.12 Comparative evaluation of advanced LL/LG fault detection approaches

4.1 Typical 5×3 PV array: (a) Healthy, (b) LG fault and (c) LL fault

4.2 I-V characteristics of the PV array: Transition from normal to faulty operation

4.3 P-V characteristics of the PV array: (a) Normal, (b) Faulty with low mismatch level and (c) Faulty string with high mismatch level

4.4 P-V characteristics of the PV array: (a) Uniform irradiation and (b) Partially shaded conditions

4.5 Different PSCs considered for identifying the right most peak in the output characteristics

4.6 Output characteristics under PSCs: (a) P-V characteristics of different PSCs, (b) I-V characteristics of case a and (c) case b

4.7 Output P-V characteristics of LL and LG faults: (a) Faults in STC and (b) Special cases
4.8 Identifying undetectable zone in high voltage PV systems 89
4.9 I-V characteristics (a) and P-V characteristics (b) for temperature variations ... 91
4.10 Flowchart for the proposed detection algorithm implemented in P&O MPPT ... 93
4.11 Experimental results: (a), (c) and (d) Transition from uniform to uniform irradiance cases and (b) Operating behavior of P&O 95
4.12 Experimental results for identification of partial shading: (a) PSC1, (b) PSC2, (c) PSC3 and (d) PSC4 .. 96
4.13 Experimental results for identification of LL and LG faults in standard test conditions: (a) LG1, (b) LG2, (c) LL1 and (d) LL2 97
4.14 Experimental results for identification of LL and LG faults in low irradiation levels: (a) LG3 and (b) LL3 ... 98
4.15 Experimental results for identification of LL and LG faults in partial shading conditions: (a) LG4 and (b) LL4 99
4.16 Experimental results for temperature variations: (a) 25°C to 26°C and b) 55°C to 60°C ... 99
4.17 6-Axial representation of performance parameters for comparison ... 101
5.1 Typical $n \times n$ PV array without blocking diodes: (a) Healthy and (b) Characterized by LG/LL fault ... 106
5.2 Typical $n \times n$ PV array with blocking diodes: (a) Healthy and (b) characterized by LG/LL fault ... 107
5.3 Existing sensor placement strategies: (a)-(c) Conventional and (d) Proposed by Hu et al. (2015) ... 109
5.4 Proposed sensor locations for LL/LG fault detection: Generalized arrangement ... 109
5.5 Proposed sensor locations for 5×5 PV array: (a) Normal and (b) LL/LG fault condition ... 111
5.6 LL and LG faults considered in the 1st PV string for testing: (a) LL and (b) LG faults ... 112
5.7 Simulation results for the proposed sensor arrangement at various fault mismatch levels without MPPT without blocking diodes: (a) 7Ω, (b) 7.5Ω, (c) 8.5Ω and (d) 11.2Ω faults .. 113

5.8 Simulation results for the proposed sensor arrangement for faults in the last string: (a) Normal operation and (b) 8.5Ω fault in the last string ... 113

5.9 Simulation results at various fault mismatch levels without MPPT with blocking diodes: (a) 7Ω, (b) 7.5Ω, (c) 8.5Ω and (d) 11.2Ω faults 114

5.10 Simulation results for the proposed sensor arrangement at various fault mismatch levels with MPPT without blocking diodes: (a) 7Ω, (b) 7.5Ω, (c) 8.5Ω and (d) 11.2Ω faults .. 115

5.11 Simulation results at various fault mismatch levels with MPPT with blocking diodes: (a) 7Ω, (b) 7.5Ω, (c) 8.5Ω and (d) 11.2Ω faults 116

5.12 Simulation results for 11.2Ω LL/LG fault at various irradiance levels: (a) 400 W/m² and (b) 200 W/m² .. 117

5.13 Simulation results for 11.2Ω fault with high line impedances: (a) 10 and (b) 30Ω ... 117