<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>TITLE</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>LIST OF PLATES</td>
<td>xvii</td>
</tr>
<tr>
<td></td>
<td>NOMENCLATURE</td>
<td>xviii</td>
</tr>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Civilization and light</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Solar energy as daylighting</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Benefits of daylighting</td>
<td>3</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Energy saving</td>
<td>3</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Health and wellbeing</td>
<td>4</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Natural light and colour rendering</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Thesis structure</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>LITERATURE SURVEY OF DAYLIGHT AVAILABILITY AND DAYLIGHTING SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Solar radiation and daylight</td>
<td>7</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Solar geometry</td>
<td>7</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Sun and earth geometric relationship</td>
<td>8</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Angle of declination</td>
<td>8</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Solar time and sun shine hours</td>
<td>11</td>
</tr>
</tbody>
</table>
2.2.5 Solar radiation on earth 13
2.2.6 Solar radiation on inclined surfaces 14
2.2.7 Projection of radiation into different planes 15
2.3 Basic solar energy theory and measurements 16
2.3.1 Radiation measurements 17
2.4 Daylight availability 18
2.4.1 Mathematical models 19
2.4.1.1 Irradiance models 20
2.4.1.2 Models for estimation of luminous efficacy 24
2.4.1.3 Slope exterior illuminance models 28
2.4.1.4 Sky radiance and luminance distribution models 30
2.5 Daylighting systems 38
2.5.1 Daylighting systems with shading 39
2.5.2 Daylighting systems without shading 39
2.6 Daylighting by glazing systems 40
2.7 Daylighting by optical elements 42
2.8 Daylighting by light-redirecting systems 46
2.9 Light pipes/ducts and their performance 52
2.10 Discussions 63

3. CHARACTERISTICS REVIEW OF COMPOUND PARABOLIC CONCENTRATORS
3.1 Introduction 67
3.2 Collector configurations 67
3.2.1 Classification of optical concentrators 69
3.2.2 Types of optical concentrators 69
3.3 Definitions related to concentrators 71
3.4 Applications of concentrators 72
3.5 Compound parabolic concentrator (CPC) 73
 3.5.1 Geometry of CPC 74
 3.5.2 Orientation and absorbed energy for CPC collectors 82
 3.5.3 Optical efficiency of the CPC 87
 3.5.4 Radiation distribution on the absorber of the CPC 89
 3.5.5 Optimum half acceptance angle for the CPC 90
3.6 Other developments in CPC 91
 3.6.1 Sea shell concentrator 91
 3.6.2 Asymmetric concentrator 93
 3.6.3 MaReCo - Maximum reflector collector 93
3.7 Convection heat transfer in CPC 95
3.8 Application of CPC 96
3.9 Definition of problem for this thesis 97

4. DESIGN ASPECTS AND ANALYSIS OF CPC INTEGRATED WITH LIGHT PIPE
 4.1 Introduction 99
 4.2 Collector configurations 99
 4.2.1 Symmetrical full CPC 99
 4.2.2 Symmetrical truncated CPC 102
 4.2.3 Asymmetrical CPC 103
 4.3 Design of light pipe 104
4.4 Integration of CPC with light pipe 106
4.5 Tracking requirements for CPC 107
4.6 Daylight evaluation 111
 4.6.1 Scaled models 111
 4.6.2 Photometric evaluation 112
 4.6.3 Lighting quality and visual comfort evaluation 113
 4.6.4 Visual observation 114

5. MATERIAL SELECTION AND FABRICATION OF THE SYSTEM
 5.1 Introduction 115
 5.2 Fabrication of scaled model room 116
 5.3 Light Pipe: Materials, design and construction 118
 5.4 CPCs: Materials, design and construction 120
 5.4.1 Drawing and template preparation 121
 5.4.2 Skeleton structure fabrication 122
 5.4.3 Reflectors sheet fitting 122
 5.4.4 Fabrication of asymmetrical CPC (ACPC) 124
 5.5 CPC mounting method on scaled model room 125
 5.6 Instrumentation 127
 5.6.1 Temperature and illuminance measurement sensors 127
 5.6.1.1 Precision centigrade temperature sensors (LM35DZ) 127
 5.6.1.2 Illumination sensors (Silicon photodiodes-BPW34) 128
 5.6.2 Solar radiation measurement 131
 5.6.3 Lux meter 132
 5.6.4 Magnetic compass 132
5.7 Trial readings and re-fabrication 133

6. PERFORMANCE PREDICTIONS AND INVESTIGATIONS

6.1 Introduction 134

6.2 Performance predictions 134

6.2.1 Optical behaviour of solar radiation 134

6.2.2 Thermal behaviour of solar radiation 135

6.2.3 Heat flux quantities 136

6.2.4 Energy balance equations 140

6.2.5 Performance characteristics 141

6.2.6 Computer simulation and solution of equations 143

6.3 Calculated results 146

6.4 Experimental work 193

6.4.1 Visual evaluation 220

7. CONCLUSIONS 223

APPENDIX –I 230

APPENDIX – II 238

APPENDIX – III 250

APPENDIX – IV 257

REFERENCES 282

ADDITIONAL REFERENCES 295

PUBLICATIONS 300

EVALUATION SHEET 302