CHAPTER 3

SEMI GENERALIZED b-CLOSED SETS IN
TOPOLOGICAL SPACES

3.1 INTRODUCTION

Levin (1970) introduced a new version of generalized closed sets in topology. Andrijevic (1996) introduced a class of generalized open sets in a topological space called b-open sets. This type of set was investigated by Ekici and Caldas (2004) under the name of γ-open sets. Dunham (1980) discussed the results on generalized closed sets in topology. Ganster (2007) analyzed some questions about b-open sets. Since the advent of these notions, several researches with interesting variety of conclusions have been recorded.

The present chapter introduces a new class of semi generalized b-closed sets, semi generalized b-open sets and T_{sgb} -space and studies the relations with some other closed sets, open sets and spaces. Also, the properties of the closed sets and open sets have been discussed. Further, a new operator called semi generalized b-closure operator has been introduced in the present chapter and some of its properties studied.

3.2 SEMI GENERALIZED b-CLOSED SET

In this section, the definition of semi-generalized b-closed set and some of its characterizations are discussed.
Definition 3.2.1: A subset A of a topological space (X, τ) is said to be a semi generalized b-closed set denoted by sgb – closed set, if $b\text{Cl} (A) \subseteq G$, whenever $A \subseteq G$ and G is semi open in (X, τ).

Definition 3.2.2: The set of all sgb-closed sets in a topological space (X, τ) are denoted by $sgbc(X)$.

Theorem 3.2.3 : Let A be a sgb-closed subset of (X, τ), then $b\text{Cl} (A) – A$ does not contain any non-empty closed sets.

Proof: Let $F \in \text{Cl}(X)$ such that $F \subseteq b\text{Cl} (A) – A$ since $X – F$ is semi open.

$A \subseteq X - F$ and A is sgb-closed.

It follows that $b\text{Cl} (A) \subseteq X – F$

Thus, $F \subseteq X – b\text{Cl} (A)$.

This implies that $F \subseteq (X-b\text{Cl} (A)) \cap (b\text{Cl} (A) – A) = \emptyset$.

hence $F = \emptyset$

Corollary 3.2.4 : Let A be a sgb-closed set. Then A is b-closed iff $b\text{Cl} (A) – A$ is closed.

Proof: Necessary part: Let A be a sgb-closed set. If A is b-closed, then $b\text{Cl} (A) – A = \emptyset$ which is closed set.

Converse part: Let $b\text{Cl} (A) – A$ be closed, then by Theorem 3.2.3 $b\text{Cl} (A) – A$ does not contain any non-empty closed subset and since $b\text{Cl} (A) – A$ is closed subset of itself. Then,

$b\text{Cl} (A) – A = \emptyset$

$b\text{Cl} (A) = A$

and A is b-closed set.
Theorem 3.2.5: Let $B \subseteq A \subseteq X$ where A is a sgb-closed set and semi-open set. B is then sgb-closed relative to A iff B is sgb-closed in X.

Proof: Necessary part: It is first considered that since $B \subseteq A$ and A are both sgb-closed and semi-open set, then $b\text{Cl} (A) \subseteq A$ and thus $b\text{Cl} (B) \subseteq b\text{Cl} (A) \subseteq A$

Now from the fact that,

$$A \cap b\text{Cl} (B) = b\text{Cl}_A (B)$$

$$b\text{Cl} (B) = b\text{Cl}_A (B) \subseteq A$$

If B is sgb-closed relative to A and G is semi-open subset of X such that $B \subseteq G$, then $B = B \cap A \subseteq G \cap A$ where $G \cap A$ is semi-open in A.

Hence, B is sgb-closed relative to A,

$$b\text{Cl} (B) = b\text{Cl}_A (B) \subseteq G \cap A$$

$$\Rightarrow b\text{Cl} (B) \subseteq G$$

\therefore B is sgb-closed in X.

Converse part: If B is sgb-closed set in X and G is semi-open subset of A such that $B \subseteq G$, then $G = V \cap A$ for some semi-open subset V of X.

As $B \subseteq V$ and B is sgb-closed in X, $b\text{Cl} (B) \subseteq V$, thus,

$$b\text{Cl}_A (B) = b\text{Cl} (B) \cap A \subseteq V \cap A \subseteq G.$$

$$\Rightarrow b\text{Cl}_A (B) \subseteq G$$

\therefore B is sgb-closed relative to A

Remark 3.2.6: Let subset A be semi-open and sgb-closed, $A \cap F$ is then sgb-closed whenever $F \in b\text{Cl} (X)$
Proof: Since A is sgb-closed and semi open set, then bCl (A) ⊆ A and thus A is b-closed. Hence, A ∩ F is b-closed in X which implies that A ∩ F is sgb-closed in X.

Theorem 3.2.7: If A is a sgb-closed set and B is any set such that A ⊆ B ⊆ bCl (A), B is then a sgb-closed set.

Proof: Let B ⊆ G where G is semi open set. Since A is sgb-closed set and A ⊆ G then bCl (A) ⊆ G and also bCl (A) = bCl (B).

Therefore, bCl (B) ⊆ G and hence B is sgb-closed set.

Theorem 3.2.8: Intersection of any two sgb-closed set is sgb-closed.

Proof: Let A and B be two sgb-closed set. ie, bCl (A) ⊆ G whenever A ⊆ G and G is semi open and bCl (B) ⊆ G wherever B ⊆ G and G is semi open.

Now, bCl (A ∩ B) = bCl (A) ∩ bCl (B) ⊆ G

Where A ∩ B ⊆ G and G is semi-open. Thus, intersection of any two sgb-closed set in sgb-closed set.

Remark 3.2.9: Union of any two sgb-closed set need not be a sgb-closed set as seen from the following example.

Example 3.2.10: Let X = {a, b, c}, \(\tau = \{X, \emptyset, \{a, b\}\} \) in this topology space (X, \(\tau \)), the subset \{a\} and \{b\} is sgb-closed but their union \{a, b\} is not sgb-closed set.

Theorem 3.2.11: Every b-closed set is sgb-closed set.

Proof: Let A be a b-closed set in X and let G be a semi-open set contains A in X. Now \(G \supseteq A = bCl A \). Hence, every b-closed set is sgb-closed set.
Remark 3.2.12: The converse of the above theorem need not be true as seen from the following example.

Example 3.2.13: Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}\}$, this topological space (X, τ), the subset $\{a, c\}$ is sgb-closed which is not b-closed set.

Theorem 3.2.14: Every swg-closed set is sgb-closed set.

Proof: Let A be a swg-closed set, then $\text{Cl} (\text{Int} A) \subseteq G$ where $A \subseteq G$ and G are semi-open. Since every semi closed set is b-closed sets, $b\text{Cl } A \subseteq \text{Cl} (\text{Int} A) \subseteq G$ and G is semi-open.

$\therefore A$ is sgb-closed set

Remark 3.2.15: The converse of the above theorem need not be true as seen from the following example.

Example 3.2.16: If $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{b\}, \{c\}, \{b, c\}\}$. In this topological space (X, τ), the subset $\{b\}$ is sgb-closed set which is not swg-closed set.

Theorem 3.2.17: Every $g\alpha$-closed set is sgb-closed set.

Proof: Let A be a $g\alpha$-closed set then, $\alpha \text{Cl } A \subseteq G$ whenever $A \subseteq G$ and G is α-open. Since, every α-closed sets are b-closed sets, $b\text{Cl} (A) \subseteq \alpha \text{Cl} A \subseteq G$ and G is semi-open.

$\therefore A$ is sgb-closed.

Hence, every $g\alpha$-closed set is sgb-closed set.

Remark 3.2.18: The converse of the above theorem need not be true as seen from the following example.
Example 3.2.19: Let \(X = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\} \). In this topological space \((X, \tau)\), the subset \(\{b\}\) is sgb-closed set which is not \(g\alpha\)-closed set.

Theorem 3.2.20: Every sg-closed set is sgb-closed set.

Proof: Let \(A\) be a sg-closed set, then \(s\text{Cl} A \subseteq G\) whenever \(A \subseteq G\) and \(G\) is semiopen. Since every semi-closed set is b-closed sets, \(b\text{Cl} A \subseteq s\text{Cl} A \subseteq G\) and \(G\) is semi open. Therefore, \(A\) is sgb-closed set.

Hence, every sg-closed set is sgb-closed set.

Remark 3.2.21: The converse of the above theorem need not be true as seen from the following example.

Example 3.2.22: Let \(X = \{a, b, c\}, \tau = \{X, \emptyset, \{a, b\}\} \). In this topological space \((X, \tau)\), the subsets \(\{a\}\) is sgb-closed set which is not sg-closed set.

Theorem 3.2.23: Every \(\hat{g}\)-closed set is sgb-closed set.

Proof: Let \(A\) be a \(\hat{g}\)-closed set, then \(\text{Cl} A \subseteq G\) whenever \(A \subseteq G\) and \(G\) is semi open. Since every closed set is b-closed sets, \(b\text{Cl} A \subseteq \text{Cl} A \subseteq G\) and \(G\) is semi open. Therefore, \(A\) is sgb-closed set.

Remark 3.2.24: The converse of the above theorem need not be true as seen from the following example.

Example 3.2.25: Let \(X = \{a, b, c\}, \tau = \{X, \emptyset, \{a, b\}\} \). In this topological space \((X, \tau)\), the subset \(\{a\}\) is sgb-closed set which is not \(\hat{g}\)-closed set.

Remark 3.2.26: The following examples show that the wg-closed sets and sgb-closed sets are independent.
Example 3.2.27: Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$. In this topological space (X, τ), the subset $\{a\}$ is sgb-closed set which is not wg-closed set.

Example 3.2.28: Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}\}$. In this topological space (X, τ), the subset $\{a, c\}$ is wg-closed set which is not sgb-closed set.

Remark 3.2.29: The following examples show that gsp-closed sets and sgb-closed sets are independent.

Example 3.2.30: Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}\}$. In this topological space (X, τ), the subset $\{a, b\}$ is gsp closed set which is not sgb-closed set.

Example 3.2.31: Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$. In this topological space (X, τ), the subset $\{a, b\}$ is sgb-closed set which is not gsp-closed set.

Remark 3.2.32: The following examples show that the α g-closed sets and sgb-closed sets are independent.

Example 3.2.33: Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}\}$. In this topological space (X, τ), the subset $\{a, b\}$ is α g-closed set which is not sgb-closed set.

Example 3.2.34: Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a, b\}\}$. In this topological space (X, τ), the subset $\{a\}$ is sgb-closed set which is not α g-closed set.

Remark 3.2.35: The following examples show that the gs-closed sets and sgb-closed sets are independent.

Example 3.2.36: Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}\}$. In this topological space (X, τ), the subset $\{a, b\}$ is gs-closed set which is not sgb-closed set.

Example 3.2.37: Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a, b\}\}$. In this topological space (X, τ), the subset $\{a\}$ is sgb-closed set which is not gs-closed set.
Remark 3.2.38: The following examples show that the #gs-closed sets and sgb-closed sets are independent.

Example 3.2.39: Let \(X = \{a, b, c\}, \quad \tau = \{X, \phi, \{a\}, \{a, b\}\} \). In this topological space \((X, \tau)\), the set \(\{a, c\} \) is \#g-semi closed set which is not sgb-closed set.

Example 3.2.40: Let \(X = \{a, b, c\}, \quad \tau = \{X, \phi, \{a, b\}\} \). In this topological space \((X, \tau)\), the subset \(\{a\} \) is sgb-closed set which is not \#g semi closed set.

Remark 3.2.41: The following examples show that the gp-closed sets and sgb-closed sets are independent.

Example 3.2.42: Let \(X = \{a, b, c\}, \quad \tau = \{X, \phi, \{a\}, \{a, b\}\} \). In this topological space \((X, \tau)\), the set \(\{a, c\} \) is gp-closed set which is not sgb-closed set.

Example 3.2.43: Let \(X = \{a,b,c\}, \quad \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}\) this topological space \((X, \tau)\), the subset \(\{a\} \) is sgb-closed set which is not gp-closed set.

Remark 3.2.44: The following examples show that the pg-closed sets and sgb-closed sets are independent.

Example 3.2.45: Let \(X = \{a, b, c\}, \quad \tau = \{X, \phi, \{b\}\} \). In this topological space \((X, \tau)\), the set \(\{a, b\} \) is pg-closed set which is not sgb-closed set.

Example 3.2.46: Let \(X = \{a, b, c\}, \quad \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}\). In this topological space \((X, \tau)\), the subset \(\{b, c\} \) is sgb-closed set which is not pg-closed set.

Remark 3.2.47: The following examples show that the *g-closed sets and sgb-closed sets are independent.
Example 3.2.48: Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}\}$. In this topological space (X, τ), the subset $\{a, b\}$ is *g-closed set which is not sgb-closed set.

Example 3.2.49: Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}, \{b, c\}\}$. In this topological space (X, τ), the subset $\{b\}$ is sgb-closed set which is not *g-closed set.

Remark 3.2.50: The following examples show that the \widetilde{g}-closed sets and sgb-closed sets are independent.

Example 3.2.51: Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. In this topological space (X, τ), the subset $\{b, c\}$ is \widetilde{g}-closed set which is not sgb-closed set.

Example 3.2.52: Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}\}$. In this topological space (X, τ), the subset $\{b\}$ is sgb-closed set which is not \widetilde{g}-closed set.

Remark 3.2.53: The following examples show that the rg-closed sets and sgb-closed sets are independent.

Example 3.2.54: Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}, \{b\}, \{c\}, \{b, c\}\}$. In this topological space (X, τ), the subset $\{b, c\}$ is rg-closed set which is not sgb-closed set.

Example 3.2.55: Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}, \{b\}, \{c\}, \{b, c\}\}$. In this topological space (X, τ), the subset $\{b\}$ is sgb-closed set which is not rg-closed set.
Remark 3.2.56: From the above discussion, the Figures 3.1 and 3.2 are obtained.

Figure 3.1 Implied relationship of sgb – closed set

where $A \rightarrow B$ represent A implies B

$A \not\rightarrow B$ represent A does not imply B
This section introduces the new class of semi generalized b-open set in topological spaces and discusses their properties.

Definition 3.3.1: A subset A of a topological space (X, τ) is called semi generalised b-open (denoted by sgb-open) set, if its complement that is A^c is semi generalized b-closed.

The collection of all sgb-open sets in X is denoted by $sgbO(X)$

Theorem 3.3.2: A subset $A \subseteq X$ is sgb-closed set if $F \subseteq b \text{Int} (A)$ whenever F is closed set and $F \subseteq A$.

Figure 3.2 Independence of sgb-closed set

where $A \nrightarrow B$ represent A does not implies B

$A \nleftarrow B$ represent B does not implies A

3.3 SEMI GENERALIZED b-OPEN SETS

This section introduces the new class of semi generalized b-open set in topological spaces and discusses their properties.
Proof: Let A be a sgb-open set and suppose \(F \subseteq A \) where \(F \) is closed, \(X-A \) is then a sgb-closed set contained in the semi open set \(X-F \). Hence, \(b\text{Cl} (X-A) \subseteq X-F \) and \(X-b\text{Int} (A) \subseteq X-F \). Thus \(F \subseteq b\text{Int} (A) \). Conversely, if \(F \) is a closed set with \(F \subseteq b\text{Int} (A) \) and \(F \subseteq A \) then \(X-b\text{Int} (A) \subseteq X-F \), then \(b\text{Cl} (X-A) \subseteq X-F \). Hence, \(X-A \) is sgb-closed set and \(A \) is a sgb-closed set.

3.4 SEPARATION AXIOMS OF \(T_{sgb} \)–SPACES

This section introduces a new class of topological space called \(T_{sgb} \)–space and studies the separation of axioms. Also, the relationship with some other spaces is also discussed.

Definition 3.4.1: A topological space \((X, \tau)\) is said to be \(T_{sgb} \)–space if every sgb-closed set is semi-closed set.

Theorem 3.4.2: Every \(T_{swg} \)–space is \(T_{sgb} \)–space.

Proof: Let \(X \) be \(T_{swg} \)–space and \(A \) be a swg-closed set in \(X \) then \(A \) is sgb-closed set by Theorem 3.2.14. As \(X \) is a \(T_{swg} \)–space, \(A \) is closed and hence it is semi-closed. Therefore, \(X \) is a \(T_{sgb} \)–space.

Remark 3.4.3: The converse of the above theorem need not be true as seen from the following example.

Example 3.4.4: Let \(X = \{a, b, c,\} \), \(\tau = \{X, \emptyset, \{a\}\} \). In this topological space \((X, \tau)\) is \(T_{sgb} \)–space and not \(T_{swg} \)–space, since the subset \(\{b\} \) is swg-closed which is not closed set.

Remark 3.4.5: The following examples show that the \(T_{sgb} \)–space and pre \(T_{\frac{1}{2}} \)–spaces are independent.
Example 3.4.6: Let \(X = \{a, b, c\}, \quad \tau = \{X, \phi, \{a\}\}. \) In this topological space \((X, \tau)\) is T\(_{\text{sgb}}\)-space and not pre T\(_{\frac{1}{2}}\) -spaces, since the subset \(\{a, b\}\) is gp-closed set which is not pre-closed set.

Example 3.4.7: Let \(X = \{a, b, c\}, \quad \tau = \{X, \phi, \{a, b\}\}. \) In this topological space \((X, \tau)\) is pre T\(_{\frac{1}{2}}\) -space and not T\(_{\text{sgb}}\) -spaces, since the subset \(\{a\}\) is sgb-closed set which is not semi-closed set.

Remark 3.4.8: The following examples show that the T\(_{\text{sgb}}\)-spaces and T\(_d\) -spaces are independent.

Example 3.4.9: Let \(X = \{a, b, c\}, \quad \tau = \{X, \phi, \{a\}, \{a, b\}\}. \) In this topological space \((X, \tau)\) is T\(_{\text{sgb}}\)-space and not T\(_d\) -spaces, since the subset \(\{b\}\) is gs-closed set which is not g-closed set.

Example 3.4.10: Let \(X = \{a, b, c\}, \quad \tau = \{X, \phi, \{c\}, \{a, b\}\} \) this topological space \((X, \tau)\) is T\(_d\)-space and not T\(_{\text{sgb}}\) -spaces, since the subset \(\{b\}\) is sgb-closed set which is not semi-closed set.

Remark 3.4.11: The following examples show that the T\(_{\text{sgb}}\)-spaces and T\(_b\) -spaces are independent.

Example 3.4.12: Let \(X = \{a, b, c\}, \quad \tau = \{X, \phi, \{a\}, \{a, b\}\}. \) In this topological space \((X, \tau)\) is T\(_{\text{sgb}}\)-space and not T\(_b\) -spaces, since the subset \(\{a, c\}\) is gs-closed set which is not closed set.

Example 3.4.13: Let \(X = \{a, b, c\}, \quad \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}. \) In this topological space \((X, \tau)\) is T\(_b\)-space and not T\(_{\text{sgb}}\) -spaces, since the subset \(\{c\}\) is sgb-closed set which is not semi-closed set.
Remark 3.4.14: The following examples show that the T_{sgb}-spaces and T_{wg}-spaces are independent.

Example 3.4.15: Let $X = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}\}$. In this topological space (X, τ) is T_{sgb}-space and not T_{wg}-spaces, since the subset $\{a, b\}$ is wg-closed set which is not closed set.

Example 3.4.16: Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. In this topological space (X, τ) is T_{wg}-space and not T_{sgb}-spaces, since the subset $\{c\}$ is sgb-closed set which is not semi-closed set.

Remark 3.4.17: The following examples show that the T_{sgb}-spaces and αT_d-spaces are independent.

Example 3.4.18: Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{a, b\}\}$. In this topological space (X, τ) is T_{sgb}-space and not αT_d-spaces, since the subset $\{b\}$ is αg-closed set which is not g-closed set.

Example 3.4.19: Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. In this topological space (X, τ) is αT_d-space and not T_{sgb}-spaces, since the subset $\{a, b\}$ is sgb-closed set which is not semi-closed set.

Remark 3.4.20: The following examples show that the T_{sgb}-spaces and αT_b-spaces are independent.

Example 3.4.21: Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. In this topological space (X, τ) is αT_b-space and not T_{sgb}-spaces, since the subset $\{c\}$ is sgb-closed set which is not semi-closed set.
Example 3.4.22: Let \(X = \{a, b, c\}, \quad \tau = \{X, \ \emptyset, \ {c}, \ {a, c}\} \). In this topological space \((X, \tau)\) is \(T_{s\text{gb}}\)-space and not \(\alpha T_b\)-spaces, since the subset \(\{b, c\}\) is \(\alpha g\)-closed set which is not closed set.

Remark 3.4.23: The following examples show that the \(T_{s\text{gb}}\)-spaces and \(T_{\alpha g}\)-spaces are independent.

Example 3.4.24: Let \(X = \{a, b, c\}, \quad \tau = \{X, \ \emptyset, \ {c}, \ {a, c}\} \). In this topological space \((X, \tau)\) is \(T_{s\text{gb}}\)-space and not \(T_{\alpha g}\)-space, since the subset \(\{b, c\}\) is \(\alpha g\)-closed set which is not \(g\alpha\)-closed set.

Example 3.4.25: Let \(X = \{a, b, c\}, \quad \tau = \{X, \ \emptyset, \ {c}, \ {a, b}\} \). In this topological space \((X, \tau)\) is \(T_{\alpha g}\)-space and not \(T_{s\text{gb}}\)-space, since the subset \(\{a\}\) is \(s\text{gb}\)-closed set which is not semi-closed set.

Remark 3.4.26: The following examples show that the \(T_{s\text{gb}}\)-spaces and \(T_{g s}\)-spaces are independent.

Example 3.4.27: Let \(X = \{a, b, c\}, \quad \tau = \{X, \ \emptyset, \ {a, b}\} \). In this topological space \((X, \tau)\) is \(T_{g s}\)-space and not \(T_{s\text{gb}}\)-space, since the subset \(\{b\}\) is \(s\text{gb}\)-closed set which is not semi-closed set.

Example 3.4.28: Let \(X = \{a, b, c\}, \quad \tau = \{X, \ \emptyset, \ {c}\} \). In this topological space \((X, \tau)\) is \(T_{s\text{gb}}\)-space and not \(T_{g s}\)-space, since the subset \(\{a, c\}\) is \(g s\)-closed set which is not \(s g\)-closed set.

Remark 3.4.29: The implication of the \(s\text{gb}\)-closed set and the independenrness of the \(s\text{gb}\)-closed set are not the same in the case of their corresponding spaces. Thus, a notable relationship under the analysis of separation axioms that is obtained is given in the Figure 3.3.
3.5 SEMI GENERALIZED b-CLOSURE OPERATOR

This section introduces a new class of topological operator called semi generalized b-closure operator and is discussed along with the T_{sgb}-space.
Definition 3.5.1: For any subset E of \((X, \tau)\), the following is defined,

\[
bCl^*(E) = \bigcap \{ A : E \subseteq A \in bD(X, \tau) \}
\]

where

\[
bD(X, \tau) = \{ A : A \subseteq X \text{ and } A \text{ is sgb-closed in } (X, \tau) \}
\]

Theorem 3.5.2: Let \(E\) and \(F\) be the two subsets of a space \((X, \tau)\). Then,

(i) \(E \subseteq bcl^*(E) \subseteq bcl(E) \subseteq cl(E)\)

(ii) \(bCl^*(\emptyset) = \emptyset\) and \(bCl^*(X) = X\)

(iii) \(bCl^*(E \cup F) \supseteq bCl^*(E) \cup bCl^*(F)\)

(iv) \(bCl^*(bCl^*E) = bCl^*(E)\) and \(bCl^*(bCl^*E) = bCl^*(E)\)

(v) if \(E\) is sgb-closed then \(bCl^*(E) = E\).

The proof follows immediately from the definitions and properties of sgb-closed sets.

Theorem 3.5.3: For each \(x \in X\), \(\{x\}\) is semi-closed or its compliment \(\{x\}^c\) is sgb-closed in a space \((X, \tau)\).

Proof: Suppose that \(\{x\}\) is not semi-closed in \((X, \tau)\). Since \(\{x\}^c\) is not semi-open. The space \(X\) itself is only semi-open set containing \(\{x\}^c\). Therefore, \(bCl(\{x\}^c)\) holds and \(\{x\}^c\) is sgb-closed.

Theorem 3.5.4: For a space \((X, \tau)\) if \(x \neq y\) then \(bCl^*(x) \neq bCl^*(y)\).

Proof: By the above Theorem, it is sufficient to prove the following, that is \(\{x\}^c\) is sgb-closed. Since \(\{y\} \subseteq \{x\}^c\), \(y \in bCl^*(\{y\}) \subseteq \{x\}^c\), \(bCl^*(\{y\}) \neq bCl^*(\{x\})\).
Definition 3.5.5: \(S.O.(X, \tau)^* = \{B: \ bcl^*(B^c) = B^c\} \)

Remarks 3.5.6: If \(E \in bD(X, \tau) \) (Def. 3.5.1) then \(E^c \in S.O(X, \tau)^* \)

Theorem 3.5.7: (i) \(S.O.(\tau) \subseteq S.O.(\tau)^* \) holds

(ii) A space \((X, \tau)\) is \(T_{sgb} \) if and only if \(S.O.(\tau) \subseteq S.O.(\tau)^* \) holds.

Proof: (i) Let \(E \in S.O.(\tau) \), its complement \(E^c \) then is semi-closed, if and only if \(E^c = bCl(E^c) \), which follows from Theorem 3.5.2 (i) that \(bCl^*(E^c) = E^c \) holds, that is \(E \in S.O.(\tau)^* \). (ii) Necessity: Since the semi-closed sets and the sgb-closed sets coincide by the assumption, \(bCl(E) = bCl^*(e) \) holds for every subset of \((X, \tau)\).

Therefore, \(S.O.(\tau) = S.O.(\tau) \)

Sufficiency: Let \(A \) be a sgb-closed set of \((X, \tau)\). By the Theorem 3.5.2(V), then \(A = bCl^*(A) \) and hence \(A^c \in S.O.(\tau) \)

Then \(A \) is semi-closed. Therefore \((X, \tau)\) is \(T_{sgb} \)-space.