BIBLIOGRAPHY
BIBLIOGRAPHY


Diem K, Lentner C (Eds.), (1973). Documenta Geigy. Gastric juice. Scientific Tables, Macclesfield, UK: Geigy Pharmaceuticals


Hegde PS and Chandra TS (2005) ESR spectroscopic study reveals higher free radical quenching potential in kodo millet (Paspalum scrobiculatum) compared to other millets. Food Chemistry, 92:177–182.


Larsen E, Christensen LP (2005). Simple saponification method for the quantitative
determination of carotenoids in green leafy vegetables. Journal of
to obtain substrates for in vitro fermentation studies. Lebensm.-Wiss. u. -
Technol. 31:509-515.
contribution to the total antioxidant capacity. Journal of Agricultural and
Leonardis AD, Macciola V, Di Rocco A (2003) Oxidative stabilization of cold-pressed
sunflower oil using phenolic compounds of the same seeds. J Sci Food Agric
83:523–8.
juice and second-pressure extracts. Journal of Agricultural and Food
Chemistry 48: 5501–5506.
lipids using an in vitro digestion model: Proposal for a standardised pH-stat
31.
active compounds isolated from green vegetables by coupled analytical
fluids containing nutrients as transport media in the Caco-2 cell culture
model: Assessment of cell viability, monolayer integrity and transport of a
poorly aqueous soluble drug and a substrate of efflux mechanisms. European
whole foods using a Caco-2 cell culture model coupled with an in vitro


S, Natural products as antioxidants. Maestri D.M., Nepote V., Lamarque A. L. and Zygadlo J.A.


McAnlis GT, McEneny J, Pearce J, Young IS (1997) The effect of various dietary flavonoids on the susceptibility of low density lipoproteins to oxidation in


Editor: Filippo Imperato. 5, Natural products as antioxidants.

Page 345


Serrano J, Goni I, and Saura-Calixto F (2007) Food antioxidant capacity determined by chemical methods may underestimate the physiological antioxidant capacity Food Research International 40(1): 15-21


Epidermal Keratinocytes Exposed to Peroxynitrite or 3-
Sreeramulu D, Raghunath M (2011) Antioxidant and Phenolic Content of Nuts, Oil
Seeds, Milk and Milk Products Commonly Consumed in India. Food and
Nutrition Sciences, 2: 422-427.
Antioxidant Activity of Commonly Consumed Plant Foods in India: Effect of
consumed cereals, millets, pulses and legumes in India. Indian Journal of
Biochemistry and Biophysics. 46:112-115.
51.
Hollman P et al. (2002) Bioavailability and metabolism. Molecular Aspects of
79-90.
Occurrence of flavonols in tomatoes and tomato-based products. Journal of
Compounds and Their Antioxidant Activity in Vegetableless Evaluation of
Sultana B, Anwas F, Iqbal S (2007) Effect of different cooking methods on the
antioxidant activity of some vegetables from Pakistan. Int J Food Sci Technol
Tagliazucchi D, Verzelloni E, Bertolini D, Conte A. (2010). In vitro bioaccessibility and
Profiles and Antioxidant Activity of Soybean Seeds as Affected by Organic and


USDA. USDA Nutritional Data Base for Standard Reference.


