List of Figures

Figure 1-1 : Schematic diagram showing the relationship between magneto electric and Multiferroic materials (a) and different types of coupling (b), respectively2
Figure 1-2: Systematic representation of ferroelectric (P-E) hysteresis loop.......................6
Figure1-3: The schematic representation of spin alignment for several common magnetic behaviours, namely paramagnetic (a), ferromagnetic ordering (b), antiferromagnetic ordering (c), canted antiferromagnetic (or weak ferromagnetic) (d), and ferrimagnetic ordering (e), respectively ... 9
Figure 1-4: in response to external magnetic field, the domains get aligned in the field direction which results saturation in the magnetization. The key physical quantities of M-H curve are coercivity (Hc) and remnant magnetization (Mrs), respectively is depicted in hysteresis loop]. ... 10
Figure 1-5 : (a) Crystal structure of bulk BiFeO3 (BFO). (b) The part of the BiFeO3 lattice in hexagonal frame of reference with only iron and oxygen ions is shown. The arrows indicate the Fe3+ moment direction. ...20
Figure 1-6: Schematic representation of the spin cycloid. The canted antiferromagnetic spins (blue and green arrows) give rise to a net magnetic moment (black arrows) that specially averaged out to zero due to the cycloid rotation. The spins are contained with the plane defined by the polarization vector (red) and the cycloid propagation vector (black) ... 23
Figure 1-7: Determination of the orientation of the Dzyaloshinskii-Moriya (DM) vector from the local geometry 25
Figure 2-1 : Flow chart for Bulk samples preparation through solid state reaction method.31
Figure 2-2: The flow chart of samples preparation through Sol-gel method.32
Figure 2-3: The Schematic diagrams of pulsed laser deposition set up.34
Figure 2-4 : X-Ray Diffraction of a crystal planes (Bragg’s law). The constructive interference shows by diffracted X-rays when the distance between paths (ABC and A'B'C') differ by an integer number of wavelengths (λ). .. 35
Figure 2-5: Schematic of Atomic Force Microscope. ...36
Figure 2-6: Shows the different type of Hysteresis loop depend on the ferroelectric materials (a) Ideal linear capacitor response (b) Ideal resistor response (c) Lossy capacitor response (d) non liner ferroelectric response.. 40
Figure 2-7: (a) Reduction Factor = 4, No of reduced copies = 4, No. of reduced copies =4, \(Ds = \log 4/\log 4 = 1 \) (b) Reduction factor = 4, No of reduced copies = 16, \(Ds = \log 4^2/\log 4 = 2 \) (c) Reduction factor = 6, No of reduced copies = 216, \(Ds = \log 6^3/\log 6 = 3 \) .. 46
Figure 3-1: XRD pattern of Pure BFO and BYFCO samples, respectively 56
Figure 3-2: (a) The variation dielectric constant with frequency at room temperature for Pure BFO and BYFCO samples, respectively. (b) The variation of tangent loss with the frequency at room temperature Pure BFO and BYFCO samples, respectively.

Figure 3-3: (a) the variation of dielectric constant with the frequency at different temperature for pure BFO. (b) The variation of dielectric constant with the frequency at different temperature BYFCO sample.

Figure 3-4: (a) Temperatures dependence variation of dielectric constant of Pure BFO at different frequencies. (b) The variation of dielectric constant for BYFCO sample at different frequencies as a function of temperature.

Figure 3-5: (a) Frequency response of magneto-dielectric constant for pure BFO at room temperature. (b) Frequency dependence magneto-dielectric constant BYFCO at room temperature.

Figure 3-6: (a) Frequency dependence Magneto-tangent loss for BFO sample at room temperature. (b) Frequency dependence Magneto-tangent loss for BYFCO sample at Room temperature.

Figure 3-7: (a) Field dependence of magnetization measured at room temperature for Pure BFO. (b) Field dependence of magnetization measured at room temperature for BYFCO sample.

Figure 3-8: Room temperature P-E hysteresis loops for pure BFO sample (a) and for BYFCO samples (b), respectively recorded at 100Hz.

Figure 3-9: The variation of leakage current density for Pure BFO (a) and for BYFCO (b), respectively, as a function of electric field recorded at room temperature.

Figure 4-1: (a) shows the XRD patterns of pure and co-doped BFO samples and (b) Show the zoomed view of XRD pattern (30°-32.5°).

Figure 4-2: The variation of dielectric constant [Fig.2 (left panel)] and tangent loss [Fig.4.2 (right panel)] as a function of frequency from 100 Hz to 10 MHz for LBFCO samples at different temperatures, respectively.

Figure 4-3: Shows the variation of dielectric constant [left panel] and tangent loss (Tan δ) [right panel] as a function of temperature for pure and co-doped BFO samples.

Figure 4-4: Left panel shows the variation of M-H loops at room temperature for all samples (Right panel) the variation of magnetization as a function of temperature under ZFC and FC condition at the applied magnetic field (1T).

Figure 4-5: Left panel shows the variation of a magneto-impedance and [right panel] the tangent loss for pure and co-doped samples as a function of frequency recorded at different magnetic field.

Figure 5-1: The iterative process of Koch curve is depicted where the Koch Curve starts with a straight line that is divided up into three equal parts. The iterative process of Koch curve is depicted where the Koch Curve starts with a straight line that is divided up into three equal parts. Using the middle segment as a base, an equilateral triangle is created. Finally, the base of the triangle is removed, leaving us with the first iteration of the Koch curve.
Figure 5-2: The XRD pattern of BiFeO3 thin films at room temperature on (a) Pt/TiO2/SiO2/Si (b) SrRuO3 coated SrTiO3 (111) and (c) Pt coated c-sapphire. 94

Figure 5-3: The frequency dispersion of dielectric permittivity (ε) and dielectric loss (Tan δ) of BFO/SRO/STO (111) thin films as a function of frequencies at different temperature (RT to 550K) are shown in the Fig 5.3(a) and Fig 5.3(b) respectively. Inset of Fig. 5.3(b) shows the zoomed view of dielectric loss. .. 96

Figure 5-4: The AFM images of BFO thin films surface deposited on different substrates (a) Si (b) SrTiO3 (111) (c) Al2O3 substrate. .. 97

Figure 5-5: The variation of logL(k) as a function of logk for BFO thin films deposited on Si, STO and Al2O3 substrates, respectively. The red solid lines are the best fit to the respective curves... 98

Figure 5-6: Fractal dimension values for (a) rows pixels and (b) columns pixels for BFO thin film on to the Si, STO and Al2O3 substrates... 99

Figure 5-7: Hurst exponent values for (a) rows pixels and (b) columns pixels for BFO thin film on to the Si, STO and Al2O3 substrates ... 100

Figure 6-1: XRD pattern BFO/CFO heterostructures on a SrTiO3 (111) substrate.............. 106

Figure 6-2: (a) Frequency dependent dielectric constant (ε) of BFO/CFO/STO (111) heterostructures at different temperature. (b) Frequency dependent tangent loss Tan(δ) of BFO/CFO/STO (111) heterostructures at different temperature. .. 108

Figure 6-3: Temperature dependent (100 K to 600K) (a) dielectric constant (ε) of BFO/CFO/STO (111) heterostructures at different frequencies. (b) Temperature dependent (100K to 600K) (b) Tangent loss [Tan (δ)] of BFO/CFO--STO (111) heterostructures at different frequencies.. 109

Figure 6-4: Magnetization of (a) BiFeO3 and, (b) BiFeO3–CoFe2O4 multilayer thin film deposited on STO (111) as a function of applied magnetic field at Room temperature. ... 110

Figure 6-5: Polarization versus applied electric field at room temperature for (a)BFO-STO (111) and (b) BFO/CFO/STO (111) films respectively... 112