List of Figures

1.1 Absorption coefficient of triply deionized water at 292 K between 100 MHz and the ultraviolet (UV). Reprinted from “Terahertz technology in biology and medicine” by P. H. Siegel, 2004, IEEE Transactions on Microwave Theory and Techniques, 52, pp. 2438-2447. Copyright © 2004 IEEE. ... 2

1.2 Schematic illustration of an experimental setup for THz time domain spectroscopy technique. .. 3

1.3 Schematic of an undulator based FEL using a relativistic electron beam to generate coherent THz radiation. .. 7

1.4 Schematic of a Čerenkov FEL. This system supports a surface mode which has standing wave pattern (solid lines) inside the dielectric slab, and is evanescent (dashed lines) in the perpendicular direction above the dielectric surface. An electron beam propagating very close to the dielectric surface interacts with this surface mode and generates coherent electromagnetic radiation under suitable conditions. .. 9

1.5 Schematic showing different configurations of Čerenkov FELs: (a) double slab based open configuration, (b) single slab based rectangular waveguide, and (c) cylindrical waveguide configuration. .. 11

1.6 Schematic of a planar configuration of Smith-Purcell FEL utilizing a rectangular metallic grating. .. 12
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Schematic of a rectangular dielectric slab placed on a conducting surface.</td>
<td>24</td>
</tr>
<tr>
<td>2.2</td>
<td>Plot of dispersion curve of the surface mode, light line, and beam line for a 30 keV electron beam. The dielectric slab consists of GaAs material having dielectric constant $\varepsilon = 13.1$, and the slab thickness is taken as 350 μm. At the intersection point of the dispersion curve and the beam line, we find the resonant frequency of the system as 0.1 THz.</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Plot of reflectivity R as a function of wavelength for the parameters discussed in the text. The singularity in R appears at 0.1 THz, which is the resonant frequency of the system.</td>
<td>28</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic of a metallic reflection grating with the co-ordinate system used in our analysis.</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic of a Čerenkov FEL driven by a flat electron beam.</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>Plots of imaginary (dashed) and real (solid) parts of μR as a function of the imaginary (a) and real (b) parts of the growth rate parameter μ near the resonance frequency, i.e., 0.1 THz. By parametrising R as $(iX/\mu + X_1)$ in this graph, we obtain $X = 1.81$ per cm and $X_1 = 0.86$.</td>
<td>51</td>
</tr>
<tr>
<td>3.3</td>
<td>Plot of gain as a function of dimensionless input electric field in a CFEL.</td>
<td>59</td>
</tr>
<tr>
<td>3.4</td>
<td>Plot of output power per unit beam width in the surface mode as a function of number of passes in a CFEL oscillator.</td>
<td>60</td>
</tr>
<tr>
<td>3.5</td>
<td>(a) Plot of growth of the bunching parameter along the interaction length at saturation of the power in the surface mode. (b) The phase space of electron beam at the entrance and at the exit of interaction region at saturation.</td>
<td>62</td>
</tr>
<tr>
<td>4.1</td>
<td>Schematic of a 3D configuration of CFEL driven by a flat electron beam.</td>
<td>71</td>
</tr>
<tr>
<td>4.2</td>
<td>Schematic of external focusing in a Čerenkov FEL using a wiggler.</td>
<td>78</td>
</tr>
</tbody>
</table>
4.3 Plot of net gain and net growth rate as a function of electron beam energy for the parameters discussed in the text. .. 83

4.4 Plot of net gain and net growth rate as a function of dielectric thickness. 84

4.5 Plot of output power as a function of pass number for the optimized parameters of a Čerenkov FEL discussed in the text. The dashed curve represents the case, where Ohmic losses are assumed to be zero, and solid curve shows the output power with finite Ohmic losses in the system at 77 K temperature. The linear current density \((dI/dy)\) of the electron beam is taken as 5.6 A/m. .. 85

4.6 Schematic of a 3D SP-FEL, using a flat electron beam. 88

5.1 Schematic of a single slab based Čerenkov FEL with metallic side walls. 98

5.2 Schematic of a rectangular configuration of a double slab based CFEL system. . 100

5.3 Plot of the dispersion curve of the electromagnetic surface mode (in the empty structure, i.e., without the electron beam), and the beam line for the electron beam. The parameters used in this calculation are listed in Table 5.1. The resonant frequency of the CFEL system is obtained at the intersection, which we obtain as 0.11 THz. .. 103

5.4 Plot of net gain as a function of dimensionless input electric field in a single slab based sidewall CFEL driven by a monoenergetic flat electron beam. Dashed curve shows gain plot for a single slab based CFEL without any side wall, and solid curves represent the case of single slab based sidewall CFEL having sidewall spacing \(w=4.2\) mm. .. 111

5.5 Plot of net gain as a function of dimensionless input electric field for different values of gap \(g'\) between the lower edge of the thick electron beam, and the dielectric surface in a single slab based sidewall CFEL. The electron beam is monoenergetic with \(\Delta x=180\) \(\mu\)m, and \(\Delta y = 2.1\) mm. .. 113
5.6 Plot of net gain as a function of dimensionless input electric field in a single slab based sidewall CFEL driven by a thick electron beam having finite energy spread. .. 114

5.7 Plot of output power as a function of pass number for a single slab based sidewall CFEL oscillator, and for a single slab based CFEL oscillator without any side wall. The solid curves represent the case where the dielectric, and the metallic structure are kept at 77 K, whereas the dashed curve shows output power for the case having dielectric, and metallic structure at 300 K. 115

5.8 Plot of output power as a function of pass number in single slab based sidewall CFEL oscillator with its metallic, and dielectric structure kept at 77 K. The dashed and solid curves represent the power of a side wall CFEL with $L = 5$ cm, and $L = 3.5$ cm respectively. .. 117

5.9 Plot of power as a function of pass number in the waveguided configuration of slab-type CFELs. For the parameters discussed in the text, the solid curve shows power of a double slab based rectangular CFEL and the dashed curve shows power of a single slab based sidewall CFEL. .. 122

6.1 Schematic of a device based on a high average power industrial linac and an optimized undulator, to produce THz radiation along with the intended irradiation applications. .. 127

6.2 (a) Schematic representation of the radiation pattern of an oscillating electron in the frame of reference moving with electron’s average velocity in an undulator. (b) The radiation spectrum in this frame is narrow with a spectral band width $1/N_a$. .. 130
6.3 (a) Schematic representation of the radiation pattern of a relativistic electron in the laboratory frame during its motion inside an undulator. In this case the radiation gets confined in a cone having semi angle 1/2γ. (b) The radiation spectrum seen in the laboratory frame in an undulator. The wavelength gets shorter and the radiation spectrum gets broader due to the angle dependent Doppler effects. (c) The selection of near axis radiation having natural bandwidth Δω/ω = 1/Nu in the laboratory frame, where Nu is the number of undulator periods. ... 131

6.4 Plot of output power (dashed) in central cone and operating wavelength (solid) as a function of undulator parameter K for E = 10 MeV, I = 10 mA, Nu = 15, and λu=50 mm. ... 136

6.5 Plot of output power (dashed) in central cone and operating wavelength (solid) as a function of electron beam energy for I = 10 mA, K = 1.2, λu = 50 mm, and Nu = 15. ... 137

6.6 Plot of radiated power as a function of interaction length for the spontaneous emission in an undulator having K = 1.2, Nu = 15, and λu=50 mm. For the input electron beam, energy E is taken as 10 MeV, and average current I is considered as 10 mA. ... 140

6.7 Plot of power spectrum in spontaneous emission of radiation at the exit of a 75 cm long undulator having K = 1.2, Nu = 15, and λu = 50 mm. The input electron beam energy E is taken as 10 MeV, and input electron beam current I is considered as 10 mA. ... 140

6.8 Plot of output power (dashed) and spectral brightness (solid) as a function of relative rms beam energy spread for εn = 30 mm-mrad, I = 10 mA, and K = 1.2. Calculations are performed using the code GINGER. 141
6.9 Output power (dashed) and spectral brightness (solid) as a function of normalized beam emittance for the undulator parameters $K = 1.2$. The beam current is here assumed to be 10 mA and the relative rms energy spread of the electron beam is taken as 7%. Calculations are performed using the code GINGER. 142

A.1 Schematic of a single slab based CFEL having metallic side walls. The electron beam is not shown here. 154

B.1 Schematic of a double slab based rectangular CFEL system. The electron beam is not shown here. 160
List of Tables

3.1 Parameters of a CFEL used in the calculation ... 50

5.1 Parameters of a sidewall CFEL used in the calculation 102

5.2 Comparison of analytical and simulation results for the net small-signal gain of
a single slab based CFEL, assuming different values of electron beam width.
Here, $\Delta x = 0$, and $w = 4.2$ mm. ... 112

5.3 Parameters of double slab based rectangular CFEL used in the calculation ... 121

6.1 Linac parameters used in our calculations. These parameters are taken from “ILU-
14 industrial electron linear accelerator with a modular structure” by A. A.
Bryazgin et al., 2011, Instruments and Experimental Techniques, 54, pp. 295-

6.2 Parameters of the undulator used in our calculation 136