List of Figures

Fig. 3.1. Effect of the degree of crosslinking on swelling capacity of BDDMA-PS resins.

Fig. 3.2. FTIR spectrum of chloromethylated resin.

Fig. 3.3. TG graphs (a) PS-BDDMA resin, (b) Quaternized BDDMA-PS resin and (c) dichromate attached PS-BDDMA resin.

Fig. 3.4. SEM photographs: (1) BDDMA-PS resin, (2) Chloromethylated BDDMA-PS resin, (3) Quaternized BDDMA-PS resin and (4) BDDMA-PS bound dichromate reagent.

Fig. 3.5. SEM photographs: (1) PEG-PSQAD 2g1 (2) PSQAD 2e1 with dimethylene spacer and (3). PSQAD 2f1 with tetramethylene spacer.

Fig. 4.1. Plot of % oxidation vs time.

Fig. 4.2. Percentage conversions with reagents 2d1-2d5 after 80 minutes.

Fig. 5.1. Swelling effect on functional modification of 4a and 5a.

Fig. 5.2. Swelling studies of 4a and 5a.

Fig. 5.3. SEM photographs: (1) Polymer 4a, (2) transamidated polymer 4b, (3) Quaternized resin 4c and (4) polymeric dichromate reagent 4d.

Fig. 5.4. Plot of % conversion of benzoin to benzil.

Fig. 5.5. Effect of solvent on the rate of oxidation.

Fig. 5.6. Effect of temperature on reaction time for 4d and 5d.

Fig. 5.7. Plot of % oxidation of benzoin using polymeric dichromate reagent 4d.

Fig. 5.8. Initial burst kinetics in oxidation-a comparison.
Fig. 5.9. % Conversion of ferrous to ferric ion.

Fig. 5.10. Effect of temperature on the oxidation of Fe(II) ion.

Fig. 5.11. % Oxidation of Fe(II) ion with polystyrene based dichromate reagents.

Fig. 5.12. % Oxidation of Fe(II), Co(II), Cu(II) and Hg(I) ions with 4d.

Fig. 6.1a. 1H NMR spectrum of phenylacetaldehyde.

Fig. 6.1b. 13C NMR spectrum of phenylacetaldehyde.

Fig. 6.1c. FTIR spectrum of phenylacetaldehyde.

Fig. 6.2. Effect of molar concentration of the polymeric reagent.

Fig. 6.3. Effect of temperature on oxidation rate of phenylalanine using 4d.

Fig. 6.4a. 1H NMR spectrum of 3-(methylthio)propanal.

Fig. 6.4b. 13C NMR spectrum of 3-(methylthio)propanal.

Fig. 6.4c. FTIR spectrum of 3-(methylthio)propanal.

Fig. 6.5a. 1H NMR spectrum of 3-(methylsulfinyl)propanal.

Fig. 6.5b. 13C NMR spectrum of 3-(methylsulfinyl)propanal.

Fig. 6.5c. FTIR spectrum of 3-(methylsulfinyl)propanal.

Fig. 6.6. 1H NMR spectrum of maleimide.

Fig. 6.7. Tetrapyrrole system.

Fig. 6.8. Effect of temperature on rate of oxidation of nicotine.

Fig. 6.9a. FTIR spectrum of nicotinic acid.

Fig. 6.9b. 1H NMR spectrum of nicotinic acid.

Fig. 6.9c. 13C NMR spectrum of nicotinic acid.

Fig. 6.10. Nicotine oxidation using different dichromate reagents.
Fig. 6.11a. FTIR spectra of thioanisole and methyl phenyl sulfoxide.
Fig. 6.11b. 1H NMR spectrum of methyl phenyl sulfide.
Fig. 6.11c. 1H NMR spectrum of methyl phenyl sulfoxide.
Fig. 6.11d. 13C NMR spectrum of methyl phenyl sulfide.
Fig. 6.11e. 13C NMR spectrum of methyl phenyl sulfoxide.
Fig. 6.11f. Mass spectrum of thioanisole and methyl phenyl sulfoxide.