APPENDIX
Table 1.1

EFFECT OF VERMICOMPOST AND AZOTOBACTER ON DRY MATTER YIELD OF BARLEY
(HORDIUM VULGARE, L.) PLANTS

<table>
<thead>
<tr>
<th>Plants</th>
<th>Days</th>
<th>Part</th>
<th>Control</th>
<th>Treatments</th>
<th>LSD at</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>g Vermicompost/kg soil</td>
<td>g Azotobacter/kg soil</td>
<td>P=0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>40</td>
<td>Tops</td>
<td></td>
<td>0.073</td>
<td>0.085</td>
<td>0.099</td>
</tr>
<tr>
<td>80</td>
<td>Tops</td>
<td></td>
<td>2.43</td>
<td>3.43</td>
<td>3.65</td>
</tr>
<tr>
<td>120</td>
<td>Grains</td>
<td></td>
<td>2.08</td>
<td>3.68</td>
<td>3.70</td>
</tr>
</tbody>
</table>

G dry matter yield/plant
Table 1.2

EFFECT OF VERMICOMPOST AND AZOTOBACTER ON CHLOROPHYLL OF BARLEY (HORDIUM VULGARE, L.) PLANTS

<table>
<thead>
<tr>
<th>Plants</th>
<th>Days</th>
<th>Part</th>
<th>Control</th>
<th>Treatments</th>
<th>LSD at P=0.05</th>
<th>LSD at P=0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>g Vermicompost/kg soil</td>
<td>g Azotobacter/kg soil</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>Leaves</td>
<td>83</td>
<td>89</td>
<td>102</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>Leaves</td>
<td>102</td>
<td>129</td>
<td>137</td>
<td>149</td>
</tr>
</tbody>
</table>

mg chlorophyll/100 g FM
Table: 1.3
EFFECT OF VERMICOMPOST AND AZOTOBACTER ON CATALASE OF BARLEY
(HORDIUM VULGARE, L.) PLANTS

<table>
<thead>
<tr>
<th>Plants</th>
<th>Days</th>
<th>Part</th>
<th>Control</th>
<th>Treatments</th>
<th>LSD at</th>
<th>g Vermicompost/kg soil</th>
<th>g Azotobacter/kg soil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>Tops</td>
<td>10.48</td>
<td>11.81</td>
<td>12.51</td>
<td>12.89</td>
<td>11.52</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>Tops</td>
<td>7.88</td>
<td>8.97</td>
<td>9.11</td>
<td>9.35</td>
<td>8.61</td>
</tr>
</tbody>
</table>

unit catalase/100 g FM
Table 1.4
EFFECT OF VERMICOMPOST AND AZOTOBACTER ON CALCIUM OF BARLEY
(HORDIUM VULGARE, L.) PLANTS

<table>
<thead>
<tr>
<th>Plants</th>
<th>Treatments</th>
<th>LSD at P=0.05</th>
<th>LSD at P=0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days</td>
<td>Part</td>
<td>Control</td>
<td>g Vermicompost/kg soil</td>
</tr>
<tr>
<td>40</td>
<td>Tops</td>
<td>0.35</td>
<td>0.47</td>
</tr>
<tr>
<td>80</td>
<td>Tops</td>
<td>0.71</td>
<td>0.83</td>
</tr>
<tr>
<td>120</td>
<td>Grains</td>
<td>0.039</td>
<td>0.043</td>
</tr>
</tbody>
</table>
Table: 1.5

EFFECT OF VERMICOMPOST AND *AZOTOBACTER* ON POTASSIUM OF BARLEY

(*HORDIUM VULGARE, L.*) PLANTS

<table>
<thead>
<tr>
<th>Plants</th>
<th>Days</th>
<th>Part</th>
<th>Control</th>
<th>g Vermicompost/kg soil</th>
<th>g Azotobacter/kg soil</th>
<th>LSD at</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>Tops</td>
<td>1.11</td>
<td>1.39</td>
<td>1.48</td>
<td>1.56</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>Tops</td>
<td>1.42</td>
<td>1.65</td>
<td>1.91</td>
<td>1.99</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>Grains</td>
<td>0.79</td>
<td>0.92</td>
<td>0.98</td>
<td>1.12</td>
</tr>
</tbody>
</table>

Percent Potassium DM
Table: 1.6

EFFECT OF VERMICOMPOST AND AZOTOBACTER ON MAGNESIUM OF BARLEY

(HORDIUM VULGARE, L.) PLANTS

<table>
<thead>
<tr>
<th>Plants</th>
<th>Days</th>
<th>Part</th>
<th>Control</th>
<th>Treatments</th>
<th>LSD at P=0.05</th>
<th>LSD at P=0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>g Vermicompost/kg soil</td>
<td>g Azotobacter/kg soil</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>40</td>
<td>Tops</td>
<td>0.51</td>
<td>0.56</td>
<td>0.59</td>
<td>0.62</td>
<td>0.55</td>
</tr>
<tr>
<td>80</td>
<td>Tops</td>
<td>0.51</td>
<td>0.64</td>
<td>0.77</td>
<td>0.82</td>
<td>0.59</td>
</tr>
<tr>
<td>120</td>
<td>Grains</td>
<td>0.091</td>
<td>0.098</td>
<td>0.119</td>
<td>0.121</td>
<td>0.110</td>
</tr>
</tbody>
</table>

Percent Magnesium DM
Table: 1.7

EFFECT OF VERMICOMPOST AND AZOTOBACTER ON PHOSPHORUS OF BARLEY (HORDIUM VULGARE, L.) PLANTS

<table>
<thead>
<tr>
<th>Plants</th>
<th>Control</th>
<th>Treatments</th>
<th>LSD at</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>g Vermicompost/kg soil</td>
<td>g Azotobacter/kg soil</td>
</tr>
<tr>
<td>Days</td>
<td>Part</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>40</td>
<td>Tops</td>
<td>0.58</td>
<td>0.64</td>
</tr>
<tr>
<td>80</td>
<td>Tops</td>
<td>0.68</td>
<td>0.76</td>
</tr>
<tr>
<td>120</td>
<td>Grains</td>
<td>0.51</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Percent Phosphorus DM
Table: 1.8

EFFECT OF VERMICOMPOST AND *AZOTOBACTER* ON SULPHUR OF BARLEY

(*HORDIUM VULGARE, L.*) PLANTS

<table>
<thead>
<tr>
<th>Plants</th>
<th>Days</th>
<th>Part</th>
<th>Control</th>
<th>Treatments</th>
<th>LSD at</th>
<th>LSD at</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>g Vermicompost/kg soil</td>
<td>g Azotobacter/kg soil</td>
<td>P=0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.61</td>
<td>0.71</td>
<td>0.75</td>
</tr>
<tr>
<td>40</td>
<td>Tops</td>
<td></td>
<td></td>
<td>0.61</td>
<td>0.71</td>
<td>0.75</td>
</tr>
<tr>
<td>80</td>
<td>Tops</td>
<td></td>
<td></td>
<td>0.61</td>
<td>0.71</td>
<td>0.75</td>
</tr>
<tr>
<td>120</td>
<td>Grains</td>
<td></td>
<td></td>
<td>0.059</td>
<td>0.068</td>
<td>0.071</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Percent Sulphur DM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1.9

EFFECT OF VERMICOMPOST AND *AZOTOBACTER* ON NITROGEN OF BARLEY

(*HORDIUM VULGARE*, L.) PLANTS

<table>
<thead>
<tr>
<th>Plants</th>
<th>Days</th>
<th>Part</th>
<th>Control</th>
<th>Treatments</th>
<th>Treatments</th>
<th>Treatments</th>
<th>LSD at</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>g Vermicompost/kg soil</td>
<td>g Azotobacter/kg soil</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Tops</td>
<td>1.02</td>
<td>1.31</td>
<td>1.66</td>
<td>1.74</td>
<td>1.25</td>
<td>1.46</td>
</tr>
<tr>
<td>80</td>
<td>Tops</td>
<td>1.18</td>
<td>1.35</td>
<td>1.61</td>
<td>1.69</td>
<td>1.42</td>
<td>1.56</td>
</tr>
<tr>
<td>120</td>
<td>Grains</td>
<td>1.29</td>
<td>1.52</td>
<td>1.65</td>
<td>1.76</td>
<td>1.41</td>
<td>1.68</td>
</tr>
</tbody>
</table>

Percent Nitrogen DM

Plants: Barley, Species: *Hordium vulgare* L., Part: Tops or Grains, Days: 40, 80, 120, Treatments: Control, Vermicompost/kg soil 50, 100, 150, *Azotobacter*/kg soil 50, 100, 150, LSD at P=0.05, P=0.01.
Table: 1.10

EFFECT OF VERMICOMPOST AND *AZOTOBACTER* ON IRON OF BARLEY

(*HORDEUM VULGARE, L.*) PLANTS

<table>
<thead>
<tr>
<th>Plants</th>
<th>Treatments</th>
<th>LSD at</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days</td>
<td>Part</td>
<td>Control</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>40</td>
<td>Tops</td>
<td>319</td>
</tr>
<tr>
<td>80</td>
<td>Tops</td>
<td>245</td>
</tr>
<tr>
<td>120</td>
<td>Grains</td>
<td>118</td>
</tr>
</tbody>
</table>

ppm Iron DM
Table 1.11

EFFECT OF VERMICOMPOST AND AZOTOBACTER ON MANGANESE OF BARLEY

(HORDIUM VULGARE, L.) PLANTS

<table>
<thead>
<tr>
<th>Plants</th>
<th>Days</th>
<th>Part</th>
<th>Control</th>
<th>Treatments g Vermicompost/kg soil</th>
<th>g Azotobacter/kg soil</th>
<th>LSD at P=0.05</th>
<th>P=0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>40</td>
<td>Tops</td>
<td>80</td>
<td>96</td>
<td>127</td>
<td>134</td>
<td>89</td>
<td>105</td>
</tr>
<tr>
<td>80</td>
<td>Tops</td>
<td>65</td>
<td>72</td>
<td>88</td>
<td>94</td>
<td>77</td>
<td>82</td>
</tr>
<tr>
<td>120</td>
<td>Grains</td>
<td>11</td>
<td>17</td>
<td>23</td>
<td>29</td>
<td>21</td>
<td>25</td>
</tr>
</tbody>
</table>

ppm Manganese DM
Table 2.1

EFFECT OF VERMICOMPOST AND AZOTOBACTER ON DRY MATTER YIELD OF TOMATO (LYCOPERSICUM ESCULANTUM, MILL.) PLANTS

<table>
<thead>
<tr>
<th>Plants</th>
<th>Days</th>
<th>Part</th>
<th>Control</th>
<th>g Vermicompost/kg soil</th>
<th>g Azotobacter/kg soil</th>
<th>LSD at P=0.05</th>
<th>LSD at P=0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>Tops</td>
<td>40</td>
<td></td>
<td>0.071</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tops</td>
<td>80</td>
<td></td>
<td>10.08</td>
<td>0.108</td>
<td>0.125</td>
<td>0.136</td>
<td>0.086</td>
</tr>
<tr>
<td>Leaves</td>
<td>80</td>
<td></td>
<td>5.16</td>
<td>10.50</td>
<td>11.77</td>
<td>12.27</td>
<td>10.09</td>
</tr>
<tr>
<td>Fruits</td>
<td>110</td>
<td></td>
<td>1.26</td>
<td>5.54</td>
<td>6.25</td>
<td>6.72</td>
<td>5.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.73</td>
<td>2.08</td>
<td>2.13</td>
<td>1.64</td>
</tr>
</tbody>
</table>
Table: 2.2
EFFECT OF VERMICOMPOST AND *AZOTOBACTER* ON CHLOROPHYLL OF TOMATO (*LYCOPERSICUM ESCULANTUM*, MILL.) PLANTS

<table>
<thead>
<tr>
<th>Plants</th>
<th>Control</th>
<th>Treatments</th>
<th>LSD at P=0.05</th>
<th>LSD at P=0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>g Vermicompost/kg soil</td>
<td>g Azotobacter/kg soil</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Days</td>
<td>Part</td>
<td>mg Chlorophyll/100 g FM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Leaves</td>
<td>93</td>
<td>120</td>
<td>122</td>
</tr>
<tr>
<td>80</td>
<td>Leaves</td>
<td>107</td>
<td>114</td>
<td>120</td>
</tr>
</tbody>
</table>
Table: 2.3

EFFECT OF VERMICOMPOST AND AZOTOBACTER ON CATALASE OF TOMATO

(*LYCOPERSICUM ESCULANTUM, MILL.*) PLANTS

<table>
<thead>
<tr>
<th>Plants</th>
<th>Days</th>
<th>Part</th>
<th>Control</th>
<th>Treatments</th>
<th>LSD at P=0.05</th>
<th>LSD at P=0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>g Vermicompost/kg soil</td>
<td>g Azotobacter/kg soil</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Tops</td>
<td>40</td>
<td>Tops</td>
<td>9.18</td>
<td>11.44</td>
<td>12.32</td>
<td>13.44</td>
</tr>
<tr>
<td>Tops</td>
<td>80</td>
<td>Tops</td>
<td>3.33</td>
<td>3.97</td>
<td>4.43</td>
<td>4.82</td>
</tr>
<tr>
<td>Leaves</td>
<td>80</td>
<td>Leaves</td>
<td>4.16</td>
<td>4.86</td>
<td>5.27</td>
<td>5.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>unit catalase / 100 g FM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table: 2.4

EFFECT OF VERMICOMPOST AND AZOTOBACTER ON CALCIUM OF TOMATO \((LYCOPERSICUM ESCULANTUM, \text{ MILL.}) \) PLANTS

<table>
<thead>
<tr>
<th>Plants</th>
<th>Days</th>
<th>Part</th>
<th>Control</th>
<th>Treatments</th>
<th>LSD at P=0.05</th>
<th>LSD at P=0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>g Vermicompost/kg soil</td>
<td>g Azotobacter/kg soil</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Tops</td>
<td>40</td>
<td></td>
<td>2.62</td>
<td>2.78</td>
<td>2.84</td>
<td>2.90</td>
</tr>
<tr>
<td>Tops</td>
<td>80</td>
<td></td>
<td>2.01</td>
<td>2.23</td>
<td>2.45</td>
<td>2.73</td>
</tr>
<tr>
<td>Leaves</td>
<td>80</td>
<td></td>
<td>1.24</td>
<td>1.55</td>
<td>1.75</td>
<td>1.79</td>
</tr>
<tr>
<td>Fruits</td>
<td>110</td>
<td></td>
<td>0.45</td>
<td>0.55</td>
<td>0.66</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Percent Calcium DM
Table: 2.5

EFFECT OF VERMICOMPOST AND AZOTOBACTER ON POTASSIUM OF TOMATO

(LYCOPERSICUM ESCULANTUM, MILL.) PLANTS

<table>
<thead>
<tr>
<th>Plants</th>
<th>Control</th>
<th>Treatments</th>
<th>LSD at P=0.05</th>
<th>LSD at P=0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days</td>
<td>Part</td>
<td>g Vermicompost/kg soil</td>
<td>g Azotobacter/kg soil</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>40</td>
<td>Tops</td>
<td>2.14</td>
<td>2.31</td>
<td>2.63</td>
</tr>
<tr>
<td>80</td>
<td>Tops</td>
<td>0.88</td>
<td>1.12</td>
<td>1.30</td>
</tr>
<tr>
<td>80</td>
<td>Leaves</td>
<td>1.12</td>
<td>1.44</td>
<td>1.67</td>
</tr>
<tr>
<td>110</td>
<td>Fruits</td>
<td>0.51</td>
<td>0.62</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Percent Potassium DM
Table 2.6

EFFECT OF VERMICOMPOST AND *AZOTOBACTER* ON MAGNESIUM OF TOMATO (*LYCOPERSICUM ESCULANTUM*, MILL.) PLANTS

<table>
<thead>
<tr>
<th>Plants</th>
<th>Days</th>
<th>Part</th>
<th>Control</th>
<th>g Vermicompost/kg soil</th>
<th>g Azotobacter/kg soil</th>
<th>LSD at</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Tops</td>
<td>40</td>
<td>Tops</td>
<td>26</td>
<td>31</td>
<td>37</td>
<td>38</td>
</tr>
<tr>
<td>Tops</td>
<td>80</td>
<td>Tops</td>
<td>27</td>
<td>30</td>
<td>36</td>
<td>40</td>
</tr>
<tr>
<td>Leaves</td>
<td>80</td>
<td>Leaves</td>
<td>16</td>
<td>20</td>
<td>23</td>
<td>26</td>
</tr>
<tr>
<td>Fruits</td>
<td>110</td>
<td>Fruits</td>
<td>29</td>
<td>37</td>
<td>39</td>
<td>45</td>
</tr>
</tbody>
</table>

Percent Magnesium DM

<table>
<thead>
<tr>
<th>Plants</th>
<th>Days</th>
<th>Part</th>
<th>Percent Magnesium DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tops</td>
<td>40</td>
<td>Tops</td>
<td>26</td>
</tr>
<tr>
<td>Tops</td>
<td>80</td>
<td>Tops</td>
<td>27</td>
</tr>
<tr>
<td>Leaves</td>
<td>80</td>
<td>Leaves</td>
<td>16</td>
</tr>
<tr>
<td>Fruits</td>
<td>110</td>
<td>Fruits</td>
<td>29</td>
</tr>
</tbody>
</table>
Table 2.7
EFFECT OF VERMICOMPOST AND *AZOTOBACTER* ON PHOSPHORUS OF TOMATO (*LYCOPERSICUM ESCULANTUM, MILL.*) PLANTS

<table>
<thead>
<tr>
<th>Plants</th>
<th>Days</th>
<th>Part</th>
<th>Control</th>
<th>Treatments</th>
<th>LSD at</th>
<th>(\text{g Vermicompost/kg soil})</th>
<th>(\text{g Azotobacter/kg soil})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>Tops</td>
<td>0.22</td>
<td>0.27</td>
<td>0.29</td>
<td>0.33</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>Tops</td>
<td>0.64</td>
<td>0.72</td>
<td>0.74</td>
<td>0.79</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>Leaves</td>
<td>0.40</td>
<td>0.47</td>
<td>0.50</td>
<td>0.56</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>Fruits</td>
<td>1.84</td>
<td>1.93</td>
<td>1.97</td>
<td>2.13</td>
<td>1.92</td>
</tr>
</tbody>
</table>

Percent Phosphorus DM
Table: 2.8

EFFECT OF VERMICOMPOST AND *AZOTOBACTER* ON SULPHUR OF TOMATO (*LYCOPERSICUM ESCULANTUM*, MILL.) PLANTS

<table>
<thead>
<tr>
<th>Plants</th>
<th>Control</th>
<th>Treatments</th>
<th>Treatments</th>
<th>LSD at</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>g Vermicompost/kg soil</td>
<td>g Azotobacter/kg soil</td>
<td>P=0.05</td>
</tr>
<tr>
<td>Days</td>
<td>Part</td>
<td>50</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>40</td>
<td>Tops</td>
<td>0.80</td>
<td>0.87</td>
<td>0.95</td>
</tr>
<tr>
<td>80</td>
<td>Tops</td>
<td>0.43</td>
<td>0.67</td>
<td>0.71</td>
</tr>
<tr>
<td>80</td>
<td>Leaves</td>
<td>0.89</td>
<td>1.01</td>
<td>1.07</td>
</tr>
<tr>
<td>110</td>
<td>Fruits</td>
<td>0.62</td>
<td>0.70</td>
<td>0.73</td>
</tr>
</tbody>
</table>

Percent Sulphur DM
Table: 2.9

EFFECT OF VERMICOMPOST AND AZOTOBACTER ON NITROGEN OF TOMATO
(LYCopersicum Esculentum, Mill.) Plants

<table>
<thead>
<tr>
<th>Plants</th>
<th>Control</th>
<th>Treatments</th>
<th>LSD at</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>g Vermicompost/kg soil</td>
<td>g Azotobacter/kg soil</td>
<td>P=0.05</td>
<td>P=0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days</td>
<td>Part</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Tops</td>
<td>1.47</td>
<td>1.63</td>
<td>1.82</td>
<td>1.91</td>
<td>1.61</td>
<td>1.74</td>
<td>1.86</td>
<td>0.03</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Tops</td>
<td>1.06</td>
<td>1.27</td>
<td>1.38</td>
<td>1.44</td>
<td>1.11</td>
<td>1.35</td>
<td>1.41</td>
<td>0.02</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Leaves</td>
<td>1.66</td>
<td>1.96</td>
<td>2.21</td>
<td>2.32</td>
<td>1.72</td>
<td>2.15</td>
<td>2.23</td>
<td>0.04</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Fruits</td>
<td>1.69</td>
<td>1.83</td>
<td>1.89</td>
<td>1.95</td>
<td>1.76</td>
<td>1.88</td>
<td>1.92</td>
<td>0.01</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percent Nitrogen DM
Table: 2.10

EFFECT OF VERMICOMPOST AND *AZOTOBACTER* ON IRON OF TOMATO
(*LYCOPERSICUM ESCULANTUM*, MILL.) PLANTS

<table>
<thead>
<tr>
<th>Plants</th>
<th>Days</th>
<th>Part</th>
<th>Control</th>
<th>Treatments</th>
<th>LSD at P=0.05</th>
<th>LSD at P=0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>g Vermicompost/kg soil</td>
<td>g Azotobacter/kg soil</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>Tops</td>
<td>234</td>
<td>272</td>
<td>332</td>
<td>357</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>Tops</td>
<td>106</td>
<td>137</td>
<td>155</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>Leaves</td>
<td>83</td>
<td>135</td>
<td>143</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>Fruits</td>
<td>71</td>
<td>78</td>
<td>85</td>
<td>88</td>
</tr>
</tbody>
</table>

ppm Iron DM
Table: 2.11

EFFECT OF VERMICOMPOST AND AZOTOBACTER ON MANGANESE OF TOMATO

(LYCOPERSICUM ESCULANTUM, MILL.) PLANTS

<table>
<thead>
<tr>
<th>Plants</th>
<th>Control</th>
<th>Treatments</th>
<th>LSD at</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>g Vermicompost/kg soil</td>
<td>g Azotobacter/kg soil</td>
</tr>
<tr>
<td>Days</td>
<td>Part</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>40</td>
<td>Tops</td>
<td>26</td>
<td>31</td>
</tr>
<tr>
<td>80</td>
<td>Tops</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>80</td>
<td>Leaves</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>110</td>
<td>Fruits</td>
<td>29</td>
<td>37</td>
</tr>
</tbody>
</table>

ppm Manganese DM

P=0.05 | P=0.01