LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>(a) The wurtzite structure of ZnO and the representation of tetrahedral cordination (b) Three types of crystal facets of ZnO nanostructures (Wang, Z. L., 2009)</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Energy levels of native defects in ZnO (Schmidt-Mende and MacManus-Driscoll, 2007)</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>(a) Representation of a nanowire photodetector (b) Energy band diagram of the nanowire in dark and oxygen molecules adsorbed at the nanowire surface that capture the free electron present in the n-type semiconductor (c) Under UV illumination, photogenerated holes migrate to the surface and are trapped, leaving behind unpaired electrons that contribute to the photocurrent (Soci, et al., 2007).</td>
<td>8</td>
</tr>
<tr>
<td>1.4</td>
<td>Schematic representation of graphene</td>
<td>11</td>
</tr>
<tr>
<td>2.1</td>
<td>Scheme of absorption and emission</td>
<td>30</td>
</tr>
<tr>
<td>2.2</td>
<td>Open aperture Z-scan experiment set-up for measuring the nonlinear absorption properties of the materials (Sheik-Bahae, et al., 1990)</td>
<td>33</td>
</tr>
<tr>
<td>2.3</td>
<td>Experimental set-up for measuring the photocurrent generation</td>
<td>36</td>
</tr>
<tr>
<td>3.1</td>
<td>(a) TEM micrograph and (b) HRTEM micrograph of s-ZnO</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>XRD pattern of s-ZnO</td>
<td>42</td>
</tr>
<tr>
<td>3.3</td>
<td>XRD pattern of s-ZnO synthesized without using PVP</td>
<td>43</td>
</tr>
<tr>
<td>3.4</td>
<td>TGA curve of s-ZnO synthesized with and without PVP</td>
<td>44</td>
</tr>
</tbody>
</table>
3.5 XRD pattern of s-ZnO synthesized at different pH

3.6 (a) TEM image of s-ZnO synthesized at pH 9
(b) Enlarged area containing spherical and hexagonal particles (inset shows the hexagonal plate)

3.7 TEM image of s-ZnO synthesized at highly alkaline condition

3.8 XRD pattern of s-ZnO calcined at (a) 550 °C
(b) 900 °C

3.9 TEM micrograph of s-ZnO calcined at (a) 550 °C
(b) 900 °C

3.10 Representation of the coordination of Zn$^{2+}$ with PVP and possible reaction to form ZnO

3.11 Schematic representation of the morphology of ZnO nanostructures at different pH

3.12 Thermogram of h-ZnO synthesized at different temperature

3.13 (a) XRD pattern and (b) TEM image of h-ZnO at 100 °C

4.1 UV-vis absorption spectra of the ZnO samples. Inset shows the Tauc plots for bandgap calculation

4.2 Photoluminescence (PL) spectra of h-ZnO, s-ZnO and the samples calcined at 550 °C. Inset highlights the emission at 2.69 eV by the zinc vacancies. The excitation wavelength is 340 nm

4.3 Fluorescence decay curves measured by TCSPC for h-ZnO, h-ZnO@550, s-ZnO and s-ZnO@550. The excitation wavelength is 340 nm. Emission is monitored at 550 nm (a,b) and 460 nm (c,d) respectively

4.4 Photocurrent of various ZnO samples. (a) h-ZnO and h-ZnO@550, (b) s-ZnO and s-ZnO@550 at ~0.5 V bias voltage

4.5 Nyquist plot of the impedance data of h-ZnO, h-
ZnO@550, s-ZnO and s-ZnO@550

4.6 (a) Normalized open aperture Z-scan transmittance and (b) optical limiting response curve of s-ZnO, s-ZnO@550, h-ZnO and h-ZnO@550. Symbols denote experimental results while solid curves are theoretical fits to the data.

4.7 Zn-vacancy defect levels mediated in calcined ZnO, and the effective two-photon absorption mechanism of ZnO.

5.1 XRD patterns of graphite and GO

5.2 Raman spectra of graphite and GO

5.3 SEM image of GO

5.4 TGA of Graphite and GO

5.5 IR spectrum of GO

5.6 (a) XPS survey spectrum of GO (b) C1s spectra of GO

5.7 XRD patterns of HG10, HG20, HG30, SG10, SG20 and SG30

5.8 TEM images of (a) HG30 and (b) SG30

5.9 TGA of ZnO and GO compared with (a) hydrothermally prepared hybrids and (b) solution precipitated hybrids

5.10 IR spectra of HG30 and SG30

5.11 Raman spectra of HG30 and SG30

5.12 C 1s core level XPS spectra of (a) HG30 and (b) SG30

5.13 (a) UV-vis absorption spectra of ZnO and rGO/ZnO prepared by hydrothermal method (b) Corresponding Tauc plot for bandgap calculation

5.14 Photoluminescence spectra of ZnO and rGO/ZnO prepared by hydrothermal method.
5.15 Fluorescence decay curves measured by TCSPC for h-ZnO and HG30. The excitation wavelength is 340 nm. Emission is monitored at (a) 550 nm and (b) 460 nm.

5.16 Photocurrent measurement of (a) h-ZnO, (b) HG30 at −0.5 V bias voltage.

5.17 (a) Normalized open aperture Z-scan transmittance and (b) optical limiting response curve of h-ZnO, GO and HG30. Symbols denote experimental results while solid curves are theoretical fits to the data.

6.1 XRD patterns of graphite, GO and PSS-rGO.

6.2 (a) TEM image (b) SAED pattern of PSS-rGO.

6.3 C 1s XPS spectra of (a) GO (b) PSS-rGO.

6.4 (a) UV-vis absorption spectra of (PAM-ZnO/PSS-rGO)_n on quartz substrate (b) The plot of absorbance at 270 nm and 360 nm vs the number of bilayers.

6.5 SEM images of (a) (PAM-ZnO/PSS-rGO)_3, (b) (PAM-ZnO/PSS-rGO)_5, (c) (PAM-ZnO/PSS-rGO)_9 on FTO substrate.

6.6 Cross-sectional SEM image of (PAM-ZnO/PSS-rGO)_9.

6.7 Photocurrent measurement of (a) (PAM-ZnO/PSS-rGO)_5 (b) (PAM-ZnO/PSS-rGO)_9 at bias voltage of −0.5 V.

6.8 Nyquist plot of impedance data of ZnO, rGO/ZnO, PSS-rGO and the multilayers films.

6.9 Schematic diagram of the energy band of multilayer films with two bilayers, when a bias of −0.5 V is applied across the film and illuminated with light. The possible modes of electron transfer are numbered as (1) defect assisted excitation in ZnO (2) Electron transfer to the graphene (3) recombination with the hole of ZnO in the same bilayer (4) recombination.
with the hole of ZnO in the next bilayer

6.10 Open aperture Z-scan curve of (a) (PAM-ZnO/PSS-rGO)_3 (b) (PAM-ZnO/PSS-rGO)_9 at input energy of 25 µJ. Symbols denote experimental results while solid curves are fits to the data.

6.11 Open aperture Z-scan curve of (a) (PAM-ZnO/PSS-rGO)_3 (b) (PAM-ZnO/PSS-rGO)_9 at input energy of 5 µJ. Symbols denote experimental results while solid curves are fits to the data.