LIST OF FIGURES

1.1 The concept of hyperspectral imaging and respective spectral signatures of the different materials (soil, water and vegetation), Image courtesy: www.markelowitz.com/Hyperspectral.html. 2

2.1 Flow chart of multiple classifier system. 16
2.2 Decision profile matrix of x from the L classifiers. 19

3.1 False color composites of the hyperspectral images used (a) ROSIS-University (b) ProSpecTIR (c) ROSIS-City of Pavia. 39
3.2 False color composites of the hyperspectral images used (a) HyMAP (b) HYDICE. ... 40
3.3 Flow chart of the experimental design to study the impact of dimensionality reduction methods on the MCS. 44
3.4 Overall accuracy of classifiers relative to different dimensionality reduction methods of (a) HyMAP (b) ROSIS-University (c) ProSpecTIR (d) ROSIS-City of Pavia and (e) HYDICE hyperspectral images. . . 47
3.5 Statistical dispersion measures (CV, RMD, and QCD) calculated from the base classifiers performance relative to each dimensionality reduction methods in the MCS for (a) HyMAP (b) ROSIS-University (c) ProSpecTIR (d) ROSIS-City of Pavia and (e) HYDICE hyperspectral images. 49
3.6 (a) Average accuracy of dimensionality reduction methods: The overall accuracies of all the classifiers are averaged relative to each dimensionality reduction methods. (b) Average accuracy of classifiers: overall accuracies of a particular classifier was averaged over all the dimensionality reduction methods. ... 50
3.7 Statistical dispersion measures (CV, RMD, and QCD) of the individual classifiers over all the dimensionality reduction methods (a) HyMAP (b) ROSIS-University (c) ProSpecTIR (d) ROSIS-City of Pavia and (e) HYDICE. 52
3.8 Overall accuracy of the different combination functions relative to each dimensionality reduction methods (a) HyMAP (b) ROSIS-University (c) ProSpecTIR (d) ROSIS-City of Pavia (e) HYDICE. 54
4.1 Scheme followed to assess the relationship between class, classifier and dimensionality reduction method for hyperspectral image classification. 65
4.2 Sequence of steps followed to assess the relationship between class, classifier and dimensionality reduction method for the classification of synthetic hyperspectral images. .. 66
4.3 Classified image produced by combining the classifiers which are above acceptable threshold of HyMAP image. .. 70
4.4 Classified images produced by combining the classifiers which are above acceptable threshold (a) ROSIS University (b) ROSIS City of Pavia (c) ProSpecTIR and (d) HYDICE. .. 71
4.5 Computational time (in sec) of the MCS and SVM classification methods (time was calculated after dimensionality reduction method and includes both training and testing time; experiments were performed on a desktop computer Intel i3 processor, 3.2 GHz, 3 GB RAM and 64 bit operating system). .. 81
4.6 Overall accuracy of the MCS based classification after combing the classifiers which are above the acceptable threshold for the spatially downsampled hyperspectral images. Overall accuracy of the single best classifier (SB) is included for the reference. .. 90
4.7 Classified images produced by the MCS by combining the decision function values of the classifiers and dimensionality reduction methods which meet the acceptable threshold criterion for the spatially downsampled hyperspectral images (a) ROSIS University (b) ProSpecTIR (c) ROSIS City of Pavia (d) HYDICE. .. 91
4.8 Overall accuracy from the MCS based classification after combing the classifiers which offer accuracy above the acceptable threshold for the spectrally downscaled hyperspectral images. Overall accuracy of the single best classifier (SB) is included for reference. .. 96
4.9 Classified image produced by the MCS by combining the decision function values of the classifiers and dimensionality reduction methods which offered accuracy above the acceptable threshold for the spectrally downscaled hyperspectral images (a) ProSpecTIR (b) HYDICE. .. 97

5.1 Schematic outline of the proposed DCS. In Stage I, the image classifications with all the classifiers relative to each dimensionality reduction method are performed. In Stage II, the DCS identifies pairs of optimal classifier and dimensionality reduction method. In Stage III, the output from the pairs of classifiers and dimensionality reduction method are combined to obtain final classified image. .. 112
5.2 DCS-based classified images of HyMAP data with best nontrainable combination function (a) the optimal dimension of the dimensionality reduction methods was estimated based on training samples classification (b) the optimal dimension of the dimensionality reduction methods was estimated based on class separability measure. .. 119
5.3 DCS-based classified images (best nontrainable combination function; the optimal dimension of the dimensionality reduction methods was estimated based on training samples classification): (a) ROSIS University, (b) ROSIS City of Pavia, (c) ProSpecTIR, and (d) HYDICE...

5.4 DCS-based classified images (best nontrainable combination function; the optimal dimension of the dimensionality reduction methods was estimated based on class separability measure): (a) ROSIS University, (b) ROSIS City of Pavia, (c) ProSpecTIR, and (d) HYDICE...

5.5 DCS-based classified images (best trainable combination function; the optimal dimension of the dimensionality reduction methods was estimated based on training samples classification): (a) ROSIS University, (b) ROSIS City of Pavia, (c) ProSpecTIR, and (d) HYDICE...

5.6 DCS-based classified images of HyMAP data with best trainable combination function (a) the optimal dimension of the dimensionality reduction methods was estimated based on training samples classification (b) the optimal dimension of the dimensionality reduction methods was estimated based on class separability measure...

5.7 DCS-based classified images (best trainable combination function; the optimal dimension of the dimensionality reduction methods was estimated based on class separability measure): (a) ROSIS University, (b) ROSIS City of Pavia, (c) ProSpecTIR, and (d) HYDICE...

6.1 Flowchart of the dynamic classifier selection with joint spectral and spatial approach...

6.2 (a) False color composite of the ROSIS University image (R: 0.8340 µm G: 0.6500 µm B: 0.5500 µm), (b) Ground truth image and its corresponding class labels...

6.3 (a) False color composite of the AVIRIS Indian pines image (R: 0.8314 µm G: 0.6566 µm B: 0.5574 µm), (b) Ground truth image and its corresponding class labels...

6.4 Overall accuracy (OA) and Average accuracy (AA) of the SVM classifier relative to each random subspace and Full band hyperspectral image (a) ROSIS University (b) AVIRIS...

6.5 Classified images of the University image (a) Single best (SB) classifier (b) DES-ELM (c) DES-ELM-MRF...

6.6 Classified images of the Indian pines image (a) Single best (SB) classifier (b) DES-ELM (c) DES-ELM-MRF...