TABLE OF CONTENTS

CHAPTER I - INTRODUCTION
1.1. Purpose of the study...1
References...2

CHAPTER II - AIMS AND OBJECTIVES
2.1. Aim and objectives...3

CHAPTER III - REVIEW OF LITERATURE
3.1. Historical aspects of fibrinolytic enzymes.................................4-7
3.2. Fibrinolytic enzyme source
3.2.1. From Bacteria..8-9
3.2.2. From Fungi...10-11
3.2.3. From Actinomycetes..11
3.2.4. From other Organisms..12
3.3. Microbial production of Fibrinolytic enzyme...........................13
3.4. Production of Fibrinolytic enzyme...13-14
3.4.1. Production of fibrinolytic enzyme by SmF..........................14-16
3.4.2. Production of fibrinolytic enzyme by SSF...........................16-18
3.5. Purification of fibrinolytic enzyme..18-19
3.6. Biochemical characteristics of purified fibrinolytic enzyme........19-20
3.7. Application of fibrinolytic enzyme..21-23
3.8. Mutational studies for the improvement of fibrinolytic enzyme production .23-25
References...26-30

CHAPTER IV - MATERIALS AND METHODS
4. Materials and Methods..31
4.1. a. Isolation of fungi from soil samples....................................32
4.1. b. Screening of fungi strains for fibrinolytic enzyme through plate assay........32
4.1. c. Selection of isolate..33
4.1. d. Assay of crude extract of fibrinolytic enzyme.....................33
4.2. Production of fibrinolytic enzyme through submerged fermentation........34
4.2. a. Preparation of inoculum..34
4.3. Optimization of fermentation conditions for biosynthesis of the fibrinolytic enzyme..35
4.3. a. Optimization of pH...35
CHAPTER V - RESULTS AND DISCUSSION

4.3. b. Optimization of temperature ...35
4.3. c. Optimization of inoculums size ...36
4.4. Purification of fibrinolytic enzyme ...36
4.4. a. Ammonium sulphate fractionation ...37-38
4.4. b. Dialysis ..39
4.4. c. Gel filtration chromatography ...39
4.4. d. Ion-exchange chromatography ...39-40
4.4. e. Molecular weight determination by using PAGE40
4.4. f. Silver staining of proteins ..41
4.5. Characterization of fibrinolytic enzyme ...41
4.5. a. Determination of optimum pH ..41
4.5. b. Determination of optimum temperature ..41
4.5. c. Temperature Stability analysis ...42
4.5. d. Kinetics studies ..42
4.5. e. Determination of metal ions and inhibitors for the inhibition of fibrinolytic enzyme production ...42
4.6. Molecular characterization of fibrinolytic enzyme producing organisms42
4.6. a. Phenotypic Identification ...43
4.6. b. Molecular (genotypic) Identification ...43-44
4.6. c. Sequencing ..45
4.6. d. Bioinformatics analysis ..45
4.7. Process economization for fibrinolytic enzyme biosynthesis45
4.7. a. Enhancement for the production of fibrinolytic enzyme biosynthesis using carbon sources ...46
4.7. b. Enhancement for the production of fibrinolytic enzyme biosynthesis using nitrogen sources ...46
4.7. c. Enhancement for the production of fibrinolytic enzyme biosynthesis using metal ions ...46
4.8. Comparative studies on fibrinolytic enzyme from bacterial and fungal strains (Aspergillus tamarii SAS02) ...47
4.9. Application of fibrinolytic enzyme on blood clot hydrolysis (ex-vivo)47-48
4.10. Mutational studies of Aspergillus tamarii SAS0248
References ...49-53
5.1. a. Isolation of Aspergillus tamarii for fibrinolytic enzyme production54-55
5.1. b. Rapid screening of fibrinolytic enzyme producers from plate assay
method...55-56
5.1. c. Selection of isolate...57
5.2. Production of fibrinolytic enzyme through submerged fermentation57
5.3. Optimization of fermentation parameters..57-58
5.3.a. Effect of pH on fibrinolytic enzyme biosynthesis.........................58-61
5.3. b. Effect of initial temperature on fibrinolytic enzyme production61-63
5.3.c. Effect of inoculum size on fibrinolytic enzyme production64-65
5.4. Purificational studies of fibrinolytic enzyme.......................................66-67
5.4. a. Ammonium sulphate precipitation..67
5.4. b. Dialysis...67
5.4. c. Gel-filtration chromatography...68
5.4. d. Ion-exchange chromatography...69
5.4. e. Molecular weight determination of proteins by Polyacrylamide Gel
Electrophoresis (PAGE)..70-71
5.5. Characteristics of fibrinolytic enzyme
5.5. a. Determination of optimum pH of enzyme activity71-72
5.5. b. Determination of optimum temperature of enzyme activity73
5.5. c. Analysis of temperature stability on enzyme activity....................74
5.5. d. Determination of \(K_m \) and \(V_{max} \) ..75
5.5. e. Effect of inhibitors and metal ions on fibrinolytic enzyme75-77
5.6. Molecular characterization of fibrinolytic enzyme.
5.6. a. Phenotypic identification of Aspergillus tamarii SAS02.................77
5.6. b. Genomic DNA isolation and PCR amplification of the ITS gene78
5.6. c. Sequence analysis for sample- 1 (Sample-S2)...............................78
5.6. d. The Blast result Phylogenetic tree for Sample-SAS02..................79-80
5.7. Process economization.
5.7. a. Influence of carbon on fibrinolytic enzyme production...............81-86
5.7. b. Influence of nitrogen sources on fibrinolytic enzyme production86
5.7. c. Influence of metal ions on fibrinolytic enzyme production97-102
5.8. Comparative studies of fibrinolytic enzyme *Aspergillus tamarii* SAS02 with few bacterial sp. ...102-105
5.9. Blood clot hydrolysis by fibrinolytic enzyme..106-108
5.10. Mutational study of *Aspergillus tamarii* SAS02...............................109-111
References...112-116

CHAPTER VI - SUMMARY AND CONCLUSION

6.1. Summary and conclusion...117-124
6.2. Limitations of the study...125
6.3. Future directions..126

CHAPTER VIII - ANNEXURES

1. Publications...127
2. Certificates of oral and paper presentation
3. Plagiarism verification certificate
4. Ethical clearance certificate
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Caption of the figure</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Factors that are responsible for Thrombosis</td>
<td>4</td>
</tr>
<tr>
<td>3.2</td>
<td>Process of blood clot formation</td>
<td>4</td>
</tr>
<tr>
<td>3.3</td>
<td>Action of fibrinolytic enzyme on fibrin degradation</td>
<td>6</td>
</tr>
<tr>
<td>4.1</td>
<td>Standard tyrosine curve</td>
<td>34</td>
</tr>
<tr>
<td>4.2</td>
<td>Standard bovine serum albumin curve</td>
<td>37</td>
</tr>
<tr>
<td>5.1</td>
<td>Effect of pH on biosynthesis of fibrinolytic enzyme.</td>
<td>59</td>
</tr>
<tr>
<td>5.2</td>
<td>Effect of incubation temperature on biosynthesis of fibrinolytic enzyme.</td>
<td>62</td>
</tr>
<tr>
<td>5.3</td>
<td>Effect of inoculum size on biosynthesis of fibrinolytic enzyme.</td>
<td>64</td>
</tr>
<tr>
<td>5.4</td>
<td>The elution profile of fibrinolytic enzyme from Sephadex-G-100 column.</td>
<td>69</td>
</tr>
<tr>
<td>5.5</td>
<td>The elution profile of fibrinolytic enzyme in Ion-exchange column.</td>
<td>70</td>
</tr>
<tr>
<td>5.6</td>
<td>Determination of optimum pH of fibrinolytic enzyme</td>
<td>72</td>
</tr>
<tr>
<td>5.7</td>
<td>Determination of optimum temperature of fibrinolytic enzyme</td>
<td>73</td>
</tr>
<tr>
<td>5.8</td>
<td>Analysis of temperature stability study of fibrinolytic enzyme.</td>
<td>74</td>
</tr>
<tr>
<td>5.9</td>
<td>Determination of Km and V_{max} of fibrinolytic enzyme.</td>
<td>75</td>
</tr>
<tr>
<td>5.10</td>
<td>Effect of Glucose on fibrinolytic enzyme production</td>
<td>81</td>
</tr>
<tr>
<td>5.11</td>
<td>Effect of Sucrose on fibrinolytic enzyme production</td>
<td>82</td>
</tr>
<tr>
<td>5.12</td>
<td>Effect of Maltose on fibrinolytic enzyme production</td>
<td>83</td>
</tr>
<tr>
<td>5.13</td>
<td>Effect of Yeast extract on fibrinolytic enzyme production</td>
<td>88</td>
</tr>
</tbody>
</table>
5.14 Effect of Beef extract on fibrinolytic enzyme production 89
5.15 Effect of Peptone on fibrinolytic enzyme production. 90
5.16 Effect of Ammonium sulphate on fibrinolytic enzyme production. 93
5.17 Effect of Ammonium chloride on fibrinolytic enzyme production. 94
5.18 Effect of Ammonium nitrate on fibrinolytic enzyme production. 95
5.19 Effect of Zinc sulphate on fibrinolytic enzyme production. 97
5.20 Effect of Magnesium sulphate on fibrinolytic enzyme production. 98
5.21 Effect of Copper sulphate on fibrinolytic enzyme production. 99
5.22 Effect of Iron sulphate on fibrinolytic enzyme production 100
5.23 Fibrinolytic enzyme production of Bacillus sp. 103
5.24 Fibrinolytic enzyme production of pseudomonas sp. 104
5.25 Fibrinolytic enzyme production of E.coli. 105
5.26 Comparative studies of Fibrinolytic enzyme production (Aspergillus tamarii SAS02 v/s Aspergillus tamarii SAS02mu) 110
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title of the table</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Bacterial fibrinolytic enzyme producers</td>
<td>9</td>
</tr>
<tr>
<td>3.2</td>
<td>Fungi fibrinolytic enzyme producers</td>
<td>10</td>
</tr>
<tr>
<td>3.3</td>
<td>Actinomycetes fibrinolytic enzyme producers</td>
<td>11</td>
</tr>
<tr>
<td>3.4</td>
<td>Algae fibrinolytic enzyme producers</td>
<td>12</td>
</tr>
<tr>
<td>3.5</td>
<td>Other Fibrinolytic enzyme producers</td>
<td>12</td>
</tr>
<tr>
<td>3.6</td>
<td>Biochemical Properties of fibrinolytic enzymes isolated and purified from various sources</td>
<td>20</td>
</tr>
<tr>
<td>4.1</td>
<td>Standard Ammonium Sulphate Fractionation</td>
<td>38</td>
</tr>
<tr>
<td>5.1</td>
<td>Isolates of fungi from different soil samples</td>
<td>54</td>
</tr>
<tr>
<td>5.2</td>
<td>Three fungal samples which shows the zone of clearance</td>
<td>56</td>
</tr>
<tr>
<td>5.3</td>
<td>Steps of purification of fibrinolytic enzyme</td>
<td>68</td>
</tr>
<tr>
<td>5.4</td>
<td>Effect of metal ions on enzyme activity</td>
<td>76</td>
</tr>
<tr>
<td>5.5</td>
<td>Effect of inhibitors and other compounds on enzyme activity</td>
<td>76</td>
</tr>
<tr>
<td>5.6</td>
<td>Blast result</td>
<td>79</td>
</tr>
<tr>
<td>5.7</td>
<td>Phylogenetic tree analysis</td>
<td>80</td>
</tr>
<tr>
<td>5.8</td>
<td>Effect of Glucose (Enzyme activity)-Aspergillus tamarii SAS02</td>
<td>81</td>
</tr>
<tr>
<td>5.9</td>
<td>Effect of Sucrose (Enzyme activity)-Aspergillus tamarii SAS02</td>
<td>82</td>
</tr>
<tr>
<td>5.10</td>
<td>Effect of Maltose (Enzyme activity)-Aspergillus tamarii SAS02</td>
<td>83</td>
</tr>
<tr>
<td>5.11</td>
<td>Effect of Yeast extract (Enzyme activity)-Aspergillus tamarii SAS02</td>
<td>88</td>
</tr>
<tr>
<td>5.12</td>
<td>Effect of Beef extract (Enzyme activity)-Aspergillus tamarii SAS02</td>
<td>89</td>
</tr>
</tbody>
</table>
5.13 Effect of Peptone (Enzyme activity)-Aspergillus tamarii SAS02
5.14 Effect of Ammonium sulphate (Enzyme activity)-Aspergillus tamarii SAS02
5.15 Effect of Ammonium chloride (Enzyme activity)-Aspergillus tamarii SAS02
5.16 Effect of Ammonium nitrate (Enzyme activity)-Aspergillus tamarii SAS02
5.17 Effect of Zinc sulphate (Enzyme activity)-Aspergillus tamarii SAS02
5.18 Effect of Magnesium sulphate (Enzyme activity)-Aspergillus tamarii SAS02
5.19 Effect of Copper sulphate (Enzyme activity)-Aspergillus tamarii SAS02
5.20 Effect of Iron sulphate (Enzyme activity)-Aspergillus tamarii SAS02
5.21 Fibrinolytic enzyme production by Bacillus sp
5.22 Fibrinolytic enzyme production by Pseudomonas sp
5.23 Fibrinolytic enzyme production by E.coli
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Caption of plates</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Isolates of fungi</td>
<td>55</td>
</tr>
<tr>
<td>5.2</td>
<td>S1 and S2 are producing fibrinolytic enzyme and S5 (control).</td>
<td>56</td>
</tr>
<tr>
<td>5.3</td>
<td>Isolate of Aspergillus sp. SAS02</td>
<td>57</td>
</tr>
<tr>
<td>5.4</td>
<td>SDS-PAGE for analysis of purified sample.</td>
<td>71</td>
</tr>
<tr>
<td>5.5</td>
<td>Electron microscopic image of Aspergillus tamarii SAS02 at 100µm</td>
<td>77</td>
</tr>
<tr>
<td>5.6</td>
<td>Blood clot hydrolysis by fibrinolytic enzyme from Aspergillus tamarii SAS02</td>
<td>108</td>
</tr>
<tr>
<td>5.7</td>
<td>Aspergillus tamarii SAS02mu</td>
<td>109</td>
</tr>
<tr>
<td>5.8</td>
<td>Aspergillus tamarii SAS02mu (zone appearance)</td>
<td>110</td>
</tr>
</tbody>
</table>