TABLE OF CONTENTS

ABSTRACT i
LIST OF TABLES iii
LIST OF FIGURES v
LIST OF APPENDICES vii
LIST OF ABBREVIATIONS viii

CHAPTER 1: INTRODUCTION 1-8
1.1. General introduction and habitat diversity 1
1.2. Klebsiella species- clinical importance 1
1.2.1. Identification of Klebsiella species 2
1.3. Pathogenicity of Klebsiella 3
1.4. Antimicrobial resistance 5
1.4.1. Mechanism of fluoroquinolone resistance in Klebsiella 6
1.5. Social relevance of the study 6
1.6. Aim of the study 8
1.7. Objectives of the study 8

CHAPTER 2: REVIEW OF LITERATURE 9-39
2.1. Background 9
2.1.1. History 9
2.2. Pathogenicity of Klebsiella 9
2.2.1. Capsular polysaccharides
2.2.2. Adhesins
2.2.2.1. Type 1 fimbriae
2.2.2.2. Type 3 fimbriae
2.2.3. Lipopolysaccharide
2.2.4. Siderophores
2.2.5. Hypermucoviscosity virulence factor
2.2.5.1. Regulator of the mucoid phenotype A
2.2.5.2. Mucoviscosity associated gene A
2.2.6. Urease
2.3. Biofilm formation
2.3.1. Quorum Sensing
2.3.2. Stages of biofilm formation
2.4. Antimicrobial resistance
2.4.1. Classification of antibiotics done according to their mechanism of action
2.4.2. Bacterial antimicrobial resistance
2.4.3. Horizontal transfer of antimicrobial resistance
2.4.4. Extended spectrum β-lactamases
2.4.4.1. Mechanism of action of β-lactam antibiotics
2.4.4.2. Classification of β-lactamases
2.4.4.3. ESBL types
2.5. Plasmids
2.6. Quinolones derivatives
2.6.1. Fluoroquinolone resistance determinants

2.6.1.1. Chromosomally encoded resistance

2.6.1.2. Plasmid mediated quinolone resistance

2.6.1.3. QNR determinants

2.6.1.4. Aminoglycoside acetyltransferase gene

2.6.1.5. Fluoroquinolone specific efflux pumps

2.7. Prevention and Treatment

2.8. Global trends of ESBL producing plasmid mediated quinolone resistant genes

2.9. Trends in India of ESBL producing plasmid mediated quinolone resistant genes

CHAPTER 3: MATERIALS AND METHODS

3.1. Study setting

3.2. Ethical clearance

3.3. Source of data

3.4. Sample size

3.5. Clinical specimens- inclusion criteria

3.6. Clinical specimens- exclusion criteria

3.7. Work plan

3.8. Sample collection and storage condition for the isolates

3.9. Identification and speciation of Klebsiella isolates

3.10. Antimicrobial susceptibility testing

3.10.1. Preparation of McFarland 0.5 standard
3.10.2. Preparation of the inoculum

3.10.3. Kirby Bauer disc diffusion test

3.10.4. Phenotypically detection of ESBL (by double disc diffusion test)

3.10.5. Method of detection of minimum inhibitory concentration (MIC) for fluoroquinolone drugs by E-strips test

3.11. Hemagglutination assays

3.12. Hypermucoviscosity test

3.13. Biofilm formation assay (microtitre plate method)

3.14. Genotypic detection method by Polymerase chain reaction (PCR)

3.14.1. DNA extraction from Klebsiella isolates

3.14.2. Polymerase chain reaction (PCR)

3.14.3. Conventional PCR

3.14.3.1. Amplification of genes (thermal cycling conditions of conventional PCR)

3.14.4. Multiplex PCR

3.14.4.1. Amplification of genes (thermal cycling conditions of multiplex PCR)

3.14.5. Agarose gel electrophoresis procedure

3.15. Sequencing of PCR products and analysis by NCBI Genebank database

3.16. Statistical analysis

CHAPTER 4: RESULTS

4.1 Distribution of Klebsiella isolates among clinical specimens

4..1.1 Distribution of clinical isolates based on their source in the hospital
4.1.2 Distribution of clinical isolates according to age and gender 62

4.2 Antimicrobial susceptibility testing among ESBL producing Klebsiella isolates 62

4.2.1 Sensitivity pattern of MDR Klebsiella isolates against reserved antibiotics 64

4.2.2 Distribution of MDR Klebsiella isolates based on their sources 64

4.2.3 MIC of fluoroquinolone resistant (FQR) among ESBL producing Klebsiella isolates by E-strip method 65

4.3 Classification of Klebsiella clinical isolates based on the ability to produce biofilms 66

4.4 Haemagglutination assay by the slide agglutination method 67

4.5 Detection of hypermucoviscosity virulence factor 69

4.6 Distribution of various virulence factors (biofilm formation, hypermucoviscosity, and hemagglutination assay) among MDR Klebsiella isolates 69

4.6.1 Association of quinolone resistance with the different virulence factors (biofilm formation, hypermucoviscosity and hemagglutination assay) 71

4.7 Detection of PMQR genes by Polymerase chain reaction (PCR) 73

4.7.1 Detection of virulence genes by Polymerase chain reaction 76

4.8 DNA sequencing 78

CHAPTER 5: DISCUSSION 81-93

5.1 Body site distribution, antibiotic resistance and ESBL production in clinical isolates of Klebsiella species 81

5.2 Prevalence of virulence potential among drug resistance clinical isolates of ESBL Klebsiella species 83
5.3 Prevalence of hypermucoviscosity genes among *Klebsiella* isolates

855.4 Prevalence of the *blaCTX-M* gene 86

5.5 Prevalence of plasmid mediated quinolone drug resistance

(*qnrA, aac(6’)Ib-cr, qepA, oqxA and oqxB*) genes 88

5.6 DNA sequencing 93

CHAPTER 6: SUMMARY AND CONCLUSION 94-97

6.1 A concise report of the work done 94

6.2 Conclusions of the study 95

6.3 Limitations of the study 96

6.4 Scope of future study 97

REFERENCES 98-122

APPENDICES 123-145