TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abstract</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>List of Tables</td>
<td>xviii</td>
</tr>
<tr>
<td></td>
<td>List of Figures</td>
<td>xx</td>
</tr>
<tr>
<td></td>
<td>List of Abbreviations</td>
<td>xxii</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1 Introduction to *Klebsiella pneumoniae* 1

1.1.1 Physiology and morphology of *K. pneumoniae* 1

1.1.2 Infections caused by *K. pneumoniae* 2

1.1.3 Virulence factors of *K. pneumoniae* 3

1.1.4 Antibiotic resistance in *K. pneumoniae* 3

1.1.5 Correlation between antibiotic resistance and virulence of *K. pneumonia* 4

1.2 Aim and objectives 5

1.2.1 Aim of the study 5

1.2.2 Objectives of the study 5

1.3 Social relevance 6

CHAPTER 2: REVIEW OF LITERATURE

2.1 Klebsiella 7

2.1.1 History of *K. pneumonia* 7

2.1.2 Taxonomy of *K. pneumonia* 8
2.5.7 Hemolysin 23

2.6 Antibiotic resistance mechanisms in *K. pneumoniae* 24

2.6.1 *K. pneumoniae* resistome 24

2.6.1.1 β-lactam resistance genes 25

2.6.1.2 Broad-spectrum and extended-spectrum β-lactamases 25

2.6.1.3 Plasmid-mediated AmpC genes 28

2.6.2 Carbapenem resistome 28

2.6.3 Aminoglycoside resistance genes 30

2.6.4 Quinolone resistance genes 31

2.6.5 Polymyxin resistance genes 33

2.7 Multidrug resistance in *K. pneumoniae* 35

2.7.1 Spread of MDR *K. pneumoniae* 36

CHAPTER 3: MATERIALS AND METHODS

3.1 Methodology 38

3.1.1 Period of study 38

3.1.2 Source of data 38

3.1.3 Sample size 38

3.1.4 Ethical clearance 39

3.1.5 Selection criteria 39

3.1.5.1 Inclusion criteria 39

3.1.5.2 Exclusion criteria 39

3.1.6 Study groups 39

3.2 Clinical sample collection 40

3.3 Isolation of *K. pneumoniae* from clinical samples 40
3.3.1 Isolation technique

3.4 Identification of *K. pneumoniae*

3.4.1 Identification of *K. pneumoniae* based on cultural characteristics

3.4.2 Identification of *K. pneumoniae* based on biochemical characteristics

3.4.2.1 Catalase test

3.4.2.2 Oxidase test

3.4.2.3 Oxidation-fermentation test

3.4.2.4 Nitrate reduction test

3.4.2.5 Lysine decarboxylase test

3.4.2.6 Triple sugar iron agar test

3.4.2.7 Indole test

3.4.2.8 Methyl red test

3.4.2.9 Voges - Proskauer test

3.4.2.10 Citrate utilization test

3.4.2.11 Urea hydrolysis

3.5 Storage and preservation of *K. pneumoniae* isolates

3.6 Antibiotic susceptibility testing

3.6.1 Preparation of McFarland 0.5 standard

3.6.2 Preparation of the inoculum

3.6.3 Kirby Bauer Disc diffusion Test

3.7 Detection of β-lactamases

3.7.1 Detection of extended spectrum β-lactamase

3.7.1.1 CLSI phenotypic confirmation test

3.7.2 Detection of metallo beta-lactamase

3.7.2.1 Disc potentiation test
3.7.3 Detection of carbapenemase
3.7.3.1 Modified Hodge Test (MHT)
3.8 Detection of virulence factors of *K. pneumoniae*
3.8.1 Hemolysin production
3.8.2 Detection of capsule
3.8.3 Detection of hypermucoviscosity (HMV) phenotype
3.8.4 Hemagglutinin assay
3.8.5 Biofilm assay
3.8.5.1 Tissue culture plate assay
3.8.5.2 Biofilm quantification by crystal violet assay
3.9 Detection of $\text{bla}_{\text{NDM-1}}$ gene by real time Polymerase Chain Reaction
3.9.1 Preparation of inoculum for DNA extraction
3.9.2 Bacterial genomic DNA extraction
3.9.3 Primers used in this study
3.9.4 Preparation of PCR mixture
3.9.5 Amplification of $\text{bla}_{\text{NDM-1}}$ genes by PCR technique
3.10 Statistical analysis

CHAPTER 4: RESULTS

4.1 Isolation of *K. pneumoniae* from clinical samples
4.1.1 Isolation rate of *K. pneumoniae* from clinical samples
4.1.2 Clinical source of *K. pneumoniae* isolates
4.1.3 Distribution of *K. pneumoniae* isolates across various study groups
4.1.4 Frequency of isolation of *K. pneumoniae* from various wards
4.1.5 Age wise distribution of *K. pneumoniae* isolates

4.1.6 Gender wise distribution of *K. pneumoniae*

4.2 Antibiotic susceptibility testing

4.2.1 Antibiogram of *K. pneumoniae* by Kirby-Bauer disc diffusion test

4.2.2 Antibiotic susceptibility pattern of non-ESBL producing and ESBL producing *K. pneumoniae* isolates

4.2.3 Antibiotic susceptibility pattern of non-ESBL-KP and ESBL-KP isolates from respiratory tract samples

4.2.4 Antibiotic susceptibility pattern of non-ESBL-KP and ESBL-KP isolates from exudates/pus samples

4.2.5 Antibiotic susceptibility pattern of non-ESBL-KP and ESBL-KP isolates from bloodstream samples

4.2.6 Antibiotic susceptibility pattern of non-ESBL-KP and ESBL-KP isolates from urine samples

4.2.7 Sample wise distribution of non-ESDL-KP and ESDL-KP among clinical isolates of *K. pneumoniae*

4.2.8 Sample wise distribution of non-ESBL-KP and ESBL-KP showing their susceptibility to imipenem

4.3 β-lactamase and carbapenemase production among isolates of *K. pneumoniae*

4.4 Real time PCR assay for detection of *bla*NDM-1 gene

4.5 Virulence factors produced by *K. pneumoniae* isolates

4.5.1 Sample wise distribution of virulence factors among isolates of *K. pneumoniae*

4.5.2 Distribution of various virulence factors among non-ESBL-KP and ESBL-KP isolates

4.5.3 Sample wise distribution of hemolysin production among non-ESBL-KP and ESBL-KP isolates

4.5.4 Sample wise distribution of capsule production among non-ESBL-KP and ESBL-KP isolates

4.5.5 Sample wise distribution of hypermucoviscosity among non-ESBL-KP and ESBL-KP isolates
4.5.6 Sample wise distribution of MRHA+ among non-ESBL-KP and ESBL-KP isolates 78
4.5.7 Sample wise distribution of biofilm formation among non-ESBL-KP and ESBL-KP isolates 78
4.6 Comparison of virulence factors expressed by non-ESBL-KP and ESBL-KP isolates. 79
4.7 Biofilm production by *K. pneumoniae* 80
4.8 Comparison between biofilm formation and MBL production among imipenem resistant ESBL-KP isolates 80

CHAPTER 5: DISCUSSION

5.1 Isolation of *K. pneumoniae* from various clinical samples 81
5.2 Antibiotic resistance in *K. pneumoniae* 83
5.3 Multidrug resistant *K. pneumoniae* 84
5.4 β-lactamase production among isolates of *K. pneumoniae* 85
5.5 Comparison of virulence factors produced by non-ESBL-KP and ESBL-KP isolates 86
5.6 Biofilm formation by *K. pneumoniae* 87
5.7 Real time PCR assay for detection of genes among imipenem resistant ESBL-KP isolates 88

CHAPTER 6: SUMMARY AND CONCLUSIONS

6.1 A concise report of the work done 89
6.2 Salient findings of the study 90
6.3 Conclusions and highlights of the study 91
6.4 Limitations of the study 92
6.5 Scope for future work 92

REFERENCES 93

APPENDICES 118