List of Tables

Table 2.1 Summery of literature on arc welding of Cu/SS bimetallic joint 45
Table 2.2 Summery of literature on beam welding of Cu/SS bimetallic joint 64
Table 2.3 Summery of literature on HIP of Cu/SS bimetallic joint 74
Table 2.4 Summery of literature on diffusion bonding of Cu/SS bimetallic joint 80
Table 2.5 Summery of literature on FSW of Cu/SS bimetallic joint 91
Table 3.1 Chemical composition of work piece materials 98
Table 3.2 Mechanical properties of base materials 98
Table 3.3 Operating range of FSW machine 105
Table 3.4 FSW parameters 106
Table 3.5 GTAW parameters 106
Table 3.6 Chemical composition of filler material 108
Table 3.7 LBW machine specification 109
Table 3.8 Details of LBW experiments 110
Table 3.9 Summary of Experiments 112
Table 4.1 Heat input calculated data and peak temperatures 116
Table 4.2 Visual inspection of fractured surfaces of welded specimens 124
Table 4.3 Visual inspection of fractured surfaces of welded specimens 136
List of Figures

Fig: 2.1 Microstructure of Cu/SS welded sample by GTAW 34

Fig: 2.2 (a) Cross section of welded samples of Cu/SS by GTAW and (b-d) corresponding EDX mapping of weld area 36

Fig: 2.3 Macographs of Cu/SS joint while using SS filler material by (a) SMAW and (b) GTAW 39

Figure 2.4 Microstructure of Cu/SS joint interfaces welded by GTAW while Ni-Cu-Fe filler material showing solidification cracking (SC) 39

Figure 2.5 Surface morphology of SMAW welded Cu/SS dissimilar joint using different filler material (a-b) bronze (c) Ni 40

Figure 2.6 Macro-images of Cu/SS dissimilar joint by SMAW using filler material (a) bronze (b) Ni 41

Figure 2.7 Hardness value of Cu/SS joint by SMAW using Ni filler material 41

Figure 2.8 Macrographs of joint (a) 1 (b) 2 and (c) 3 by double side arc welding process 43

Figure 2.9 Cu HAZ of Cu/SS joint by LBW 51

Figure 2.10 Micrograph of Cu/SS joint welded by LBW with welding-brazing mode 51

Figure 2.11 Illustration of liquid separation while LBW of Cu/SS dissimilar joint 52

Figure 2.12 Micrograph of Cu/SS joint welded by LBW with fusion welding mode 53

Figure 2.13 Macrographs of material welded by LBW at offset towards SS side: (a) 0.5 mm (b) 1 mm and corresponding EDS analysis (c) and (d) 54

Figure 2.14 LBW of Cu/SS at keyhole mode (a-b) and conduction mode (c) 55

Figure 2.15 (a) Weld pool growth adjacent to fusion boundary and (b) Micro channel 56

Figure 2.16 Micro cracks while EBW of Cu/SS at (a) no beam oscillation (b) with 1 mm beam oscillation 62
Figure 4.6 Microstructure results of welds made by 18 mm tool SD (a) Cu BM, (b) Cu HAZ, (c) Cu TMAZ, (d) interface of Cu and SS, (e) SZ at center (f) SZ of Cu – top side, (g) SS TMAZ, (h) SS HAZ, and (i) SS BM

Figure 4.7 X-ray diffraction peaks for the weld region of Cu-SS FSW of 18 mm shoulder diameter

Figure 4.8 Micro-hardness of welded coupons

Figure 4.9 Dissimilar Cu-SS friction stir welds under different conditions such as Heating assisted FSW of (H11) 20 Amp Current, (H22) 40 Amp Current, (H33) 60 Amp Current, Cooling assisted FSW of (A11) 15 PSI compressed air, (A22) 30 PSI compressed air, (W11) 75 ml/min water cooling and (N) Normal FSW

Figure 4.10 Macrographs of dissimilar Cu-SS friction stir welds under different conditions such as Heating assisted FSW of (H11) 20 Amp Current, (H22) 40 Amp Current, (H33) 60 Amp Current, Cooling assisted FSW of (A11) 15 PSI compressed air, (A12) 30 PSI compressed air, (W11) 75 ml/min water cooling and (N) Normal FSW

Figure 4.11 Tensile strength of dissimilar Cu-SS friction stir welds under (a) additional heating and (b) additional cooling

Figure 4.12 Fracture to the elongation of dissimilar Cu-SS friction stir welds under (a) additional heating and (b) additional cooling

Figure 4.13 SEM of tensile fracture surfaces when material is friction stir welded with 30 psi additional compressed air; overall morphology of (a) SS and (b) Cu side, (c) Centre and (d) root side of Cu

Figure 4.14 SEM of tensile fracture surfaces when material is friction stir welded with 20A assisted heating current; overall morphology of (a) SS and (b) Cu side, (c) Centre and (d) top portion of Cu side

Figure 4.15 Microstructure variations of 20 A heating assisted FSW, (a) Cu BM, (b) Cu HAZ, (c) Cu TMAZ (d) SZ-defect (e) SZ – interface -top (f) SZ – interface- root (g) TMAZ (h) SS HAZ (i) SS BM
Figure 4.16 Microstructure variations of 30 psi compressed air cooling assisted FSW, (A) SS BM, (B) SS HAZ, (C) SS TMAZ (D) SZ- interface (E) SZ (F) SZ Cu Side (G) Cu TMAZ (H) Cu HAZ (I) Cu BM

Figure 4.17 Micro hardness variations of heating assisted FSW and normal FSW

Figure 4.18 Micro hardness variations of cooling assisted FSW and normal FSW

Figure 4.19 Macrographs of GTAW joints at (a) 125 A (b) 150 A (c) 200 A GTAW current

Figure 4.20 Microstructural zone for GTAW of Cu/SS

Figure 4.21 Microstructure of weld/SS interface at (a) 125 A (b) 150 A (c) 200 A GTAW current

Figure 4.22 Element distribution maps of (a) Cu (b) Fe at weld metal/Cu interface and (c) Cu, (d) Fe, (e) Ni and (f) Cr at weld metal/SS interface for material welded at 150 A GTAW current

Figure 4.23 SEM of welded joint at 150 A GTAW current

Figure 4.24 Fe-Cr-Ni pseudo binary diagram

Figure 4.25 Microstructure of material welded at 150 A GTAW current

Figure 4.26 Microstructure of welded material at (1) 125 A, (2) 150 A and (3) 200 A GTAW current

Figure 4.27 Microstructure of welded material at 125 A GTAW current

Figure 4.28 Tensile properties of welded samples

Figure 4.29 Tensile fraction location of welded joints at (a) 125 (b) 150 & (c) 200 A GTAW current

Figure 4.30 SEM images of tensile fracture surfaces when material welded at 150 A GTAW current; overall morphology of fractured samples at (a) Cu and (b) SS side, center of (c) Cu and (d) SS side fractured region and root of (e) Cu and (f) SS side
Figure 4.31 (a) Micro hardness values of welded joints (b) XRD results of gas tungsten arc welded Cu/SS

Figure 4.32 macrographs of welded samples (a) L₁, (b) L₂, (c) L₃

Figure 4.33 Microstructure photographs of (a) sample ID L₁, (b) sample ID L₂, (c) Cu HAZ of sample ID L₁, (d) SS spherical particles of sample ID L₁, (e) SS HAZ of sample ID L₁, (f) Cu spherical particles of sample ID L₂

Figure 4.34 Microstructure photographs of sample ID L₃ (a) top side, (b) root side and (c) Cu HAZ

Figure 4.35 Distribution maps of the elements Cu and Fe near the interface for sample ID L₃; (a) interface, (b) scanning maps of Cu (c) scanning maps of Fe

Figure 4.36 Element distribution maps of Fe, Cu for sample ID L₂ (a-b) and L₁ (c-d)

Figure 4.37 Tensile properties of welded joints

Figure 4.38 Fracture location photographs of sample ID (a) L₁, (b) L₂ and (c) L₃

Figure 4.39 Fracture surface images of sample ID (a) L₃ and (b) L₂

Figure 4.40 SEM images of tensile fracture surface for sample reported higher strength; (a) Cu side, (b) SS side and higher magnification images of (c) Cu side and (d) SS side fracture surface

Figure 4.41 (a) Micro hardness values of welded joints (b) XRD results of laser beam welded Cu/SS

Figure 4.42 Surface morphology of dissimilar Cu/SS joint by (a) FSW, (b) GTAW and (c) LBW

Figure 4.43 Macrostructure of dissimilar Cu/SS joint by (GTAW, (b) FSW and (c) LBW